
Interaction Trees in Coq

Steve Zdancewic
WG 2.8
2018

2

deepspec.org

DeepSpec Integration Experiments

3

DeepWeb
(work in progress)

•  (Eventual) Goal: web server implemented in C
•  Running on top of CertiKOS
•  Verified using VST
•  Intermediate steps checked by QuickChick

Vellvm: Verified LLVM IR

4

•  Compiler intermediate representation semantics
•  Parameterized by the memory model
•  github.com/vellvm/vellvm

5

C-level APIs
hardware-level APIs

network effects
memory models

file systems

•  Coq descriptions of many different systems
•  Need a common way of describing their behaviors

–  various levels of abstraction
–  different interfaces
–  modularity / extensibility

Interaction Trees

Coq adaptation of
Freer Monads, More Extensible Effects [Kiselyov & Ishii – 2015]

(see also: algebraic effects)

6

1.  Explain Interaction Trees

2.  Demo some "toy" examples in Coq

3.  Come back to DeepSpec

7

CoInductive M (Event : Type -> Type) X :=
| Ret (x:X)
| Vis {Y: Type} (e : Event Y) (k : Y -> M Event X)
| Tau (k: M Event X)
| Err (s:string)
.

8

CoInductive M (Event : Type -> Type) X :=
| Ret (x:X)
| Vis {Y: Type} (e : Event Y) (k : Y -> M Event X)
| Tau (k: M Event X)
| Err (s:string)
.

9

(potentially) inifinite structure

CoInductive M (Event : Type -> Type) X :=
| Ret (x:X)
| Vis {Y: Type} (e : Event Y) (k : Y -> M Event X)
| Tau (k: M Event X)
| Err (s:string)
.

10

named "M" (for "monad")

CoInductive M (Event : Type -> Type) X :=
| Ret (x:X)
| Vis {Y: Type} (e : Event Y) (k : Y -> M Event X)
| Tau (k: M Event X)
| Err (s:string)
.

11

parameterized by the type of
observable events

CoInductive M (Event : Type -> Type) X :=
| Ret (x:X)
| Vis {Y: Type} (e : Event Y) (k : Y -> M Event X)
| Tau (k: M Event X)
| Err (s:string)
.

12

yielding a
value of type X

CoInductive M (Event : Type -> Type) X :=
| Ret (x:X)
| Vis {Y: Type} (e : Event Y) (k : Y -> M Event X)
| Tau (k: M Event X)
| Err (s:string)
.

13

yield a result (return of the monad)

CoInductive M (Event : Type -> Type) X :=
| Ret (x:X)
| Vis {Y: Type} (e : Event Y) (k : Y -> M Event X)
| Tau (k: M Event X)
| Err (s:string)
.

14

"visible" effect e
interacts with environment to get a value of type Y
k – the continuation that accepts the response

CoInductive M (Event : Type -> Type) X :=
| Ret (x:X)
| Vis {Y: Type} (e : Event Y) (k : Y -> M Event X)
| Tau (k: M Event X)
| Err (s:string)
.

15

internal, hidden step of computation

CoInductive M (Event : Type -> Type) X :=
| Ret (x:X)
| Vis {Y: Type} (e : Event Y) (k : Y -> M Event X)
| Tau (k: M Event X)
| Err (s:string)
.

16

error / aborted computation
(needed only for convenience)

17

τ τ τ

τ τ τ τ τ τ

τ τ τ τ e2

k2 0

k2 1

k2 3 e1

k1 a

k1 b

k1 c

k1 d

k1 e

τ "error"

τ τ τ …

τ e3 k3 () τ e3 k3 () τ e3 k3 () …

τ τ 42 τ τ 17

τ 11

τ τ τ 0

Good Qualities of Interaction Trees
•  (M E) is a monad

–  bind is defined coinductively

•  Behavioral Equivalences
–  strong bisimulation
–  up to Tau (insert a finite no. of Tau's anywhere)
–  not too hard to define new simulation relations

•  Extractable from Coq
–  yields a way of (externally) running computations

described by interaction trees
–  interpretation of events can be

defined in the metalanguage (e.g. OCaml)

18

(demo)

19

Applications
•  Vellvm Semantics
– control-flow graphs, LLVM memory model

•  DeepWeb
– web server events (HTTP get/put)

•  Verifiable Software Toolchain
– socket API

20

LLMV IR Memory Model

21

(* IO interactions for the LLVM IR *)
Inductive IO : Type -> Type :=
| Alloca : ∀ (t:dtyp), (IO dvalue)
| Load : ∀ (t:dtyp) (a:dvalue), (IO dvalue)
| Store : ∀ (a:dvalue) (v:dvalue), (IO unit)
| GEP : ∀ (t:dtyp) (v:dvalue) (vs:list dvalue), (IO dvalue)
| ItoP : ∀ (i:dvalue), (IO dvalue)
| PtoI : ∀ (a:dvalue), (IO dvalue)
| Call : ∀ (f:string) (args:list dvalue), (IO dvalue)
.

"outputs" of the Call event type of the result

Network IO

22

(* IO interactions for sockets *)
Inductive networkE : Type -> Type :=
| Listen : endpoint_id -> networkE unit
| Accept : endpoint_id -> networkE connection_id
| ConnectTo : endpoint_id -> networkE connection_id
| CloseConn : connection_id -> networkE unit
| Recv : connection_id -> positive -> networkE (option string)
| Send : connection_id -> string -> networkE unit
.

OS-level API

23

(* OS-level refinement of Network-level Spec *)
Inductive SocketAPI1 : Type -> Type :=
 | Socket_Socket (domain : Z) (type : Z) (protocol : Z) :
 SocketAPI1 (SocketError + sockfd)
 | Socket_Close (fd : sockfd): SocketAPI1 (SocketError + unit)
 | Socket_BindAndListen (fd : sockfd) : SocketAPI1 (SocketError + unit)
 | Socket_Accept (fd : sockfd) : SocketAPI1 (SocketError + sockfd)
 | Socket_Recv (fd : sockfd) (num_bytes : Z):
 SocketAPI1 (SocketError + string)
 | Socket_Send (fd : sockfd) (msg : string):

 SocketAPI1 (SocketError + unit)
.

Fancier IO Specs
•  Combinators at the Event level

–  to "mix and match" behaviors
–  made palatable via typeclasses

24

(* Example: combine nondeterminism, failure, Sockets *)

Definition SocketM (T : Type) :=
 (nondetE +' failureE +' SocketAPI.SocketAPI1) T.

Uses
•  Writing effectful programs in Coq
•  Giving specifications by "zipping"

–  relating a "client" to a "server"
–  for testing / proving

•  Transducers: change levels of abstraction
–  e.g. from "high-level" LLVM memory model to

"low-level" machine model

25

Technical Challenges
•  Coinduction in Coq

–  syntactic productivity constraints are a pain
–  Gil Hur's paco library helps (somewhat)

•  Proofs of some basic facts surprisingly tricky to prove
–  e.g. congruence of bind up to Tau
–  several possible ways to define EquivUpToTau

26

Work in Progress
•  Library & automation support for Interaction Trees

•  Vellvm proofs about more complex memory models
–  int2ptr / ptr2int

•  VST: Semantics in CompCert
–  Interaction trees as "ghost state" in separation logic

27

Interaction Trees are Fun

28

deepspec.org

29

Definition bind_body {E X Y}
 (s : M E X)
 (go : M E X -> M E Y)
 (t : X -> M E Y) : M E Y :=
 match s with
 | Ret x => t x
 | Vis e k => Vis e (fun y => go (k y))
 | Tau k => Tau (go k)
 | Err s => Err s
 end.

Definition bindM {E X Y}
 (s: M E X)
 (t: X -> M E Y) : M E Y :=
 (cofix go (s : M E X) :=
 bind_body s go t) s. 30

