
Programming Language Foundations in Agda

Philip Wadler
University of Edinburgh
wadler@inf.ed.ac.uk

Abstract. The leading textbook for formalmethods is Software Foundations (SF),
written by Benjamin Pierce in collaboration with others, and based on Coq. Af-
ter five years using SF in the classroom, I have come to the conclusion that Coq
is not the best vehicle for this purpose, as too much of the course needs to fo-
cus on learning tactics for proof derivation, to the cost of learning programming
language theory. Accordingly, I have written a new textbook, Programming Lan-
guage Foundations in Agda (PLFA). PLFA covers much of the same ground as
SF, although it is not a slavish imitation.
What did I learn from writing PLFA? First, that it is possible. One might expect
that without proof tactics that the proofs become too long, but in fact proofs in
PLFA are about the same length as those in SF. Proofs in Coq require an interactive
environment to be understood, while proofs in Agda can be read on the page.
Second, that constructive proofs of preservation and progress give immediate rise
to a prototype evaluator. This fact is obvious in retrospect but it is not exploited
in SF (which instead provides a separate normalise tactic) nor can I find it in the
literature. Third, that using raw terms with a separate typing relation is far less
perspicuous than using inherently-typed terms. SF uses the former presentation,
while PLFA presents both; the former uses about 1.6 as many lines of Agda code
as the latter, roughly the golden ratio.
The textbook is written as a literate Agda script, and can be found here:

http://plfa.inf.ed.ac.uk

Keywords: Agda · Coq · lambda calculus · dependent types.

1 Introduction

The most profound connection between logic and computation is a pun. The doctrine
of Propositions as Types asserts that a certain kind of formal structure may be read in
two ways: either as a proposition in logic or as a type in computing. Further, a related
structure may be read as either the proof of the proposition or as a programme of the
corresponding type. Further still, simplification of proofs corresponds to evaluation of
programs.

Accordingly, the title of this paper, and the corresponding textbook, Programming
Language Foundations in Agda (hence, PLFA) also has two readings. It may be parsed as
“(Programming Language) Foundations in Agda” or “Programming (Language Founda-
tions) in Agda”—the specifications in the proof assistant Agda both describe program-
ming languages and are themselves programmes.



2 P. Wadler

Since 2013, I have taught a course on Types and Semantics for Programming Lan-
guages to fourth-year undergraduates and masters students at the University of Edin-
burgh. An earlier version of that course was based on Types and Programming Lan-
guages by Pierce and Benjamin (2002), but my version was taught from its successor,
Software Foundations (hence, SF) by Pierce et al. (2010), which is based on the proof
assistance Coq (Huet et al. 1997). I am convinced by the claim of Pierce (2009), made
in his ICFP Keynote Lambda, The Ultimate TA, that basing a course around a proof
assistant aids learning.

However, after five years of experience, I have come to the conclusion that Coq
is not the best vehicle. Too much of the course needs to focus on learning tactics for
proof derivation, to the cost of learning the fundamentals of programming language
theory. Every concept has to be learned twice: e.g., both the product data type, and the
corresponding tactics for introduction and elimination of conjunctions. The rules Coq
applies to generate induction hypotheses can sometimes seem mysterious. While the
notation construct permits pleasingly flexible syntax, it can be confusing that the same
concept must always be given two names, e.g., both subst N x M and N [x := M].
Names of tactics are sometimes short and sometimes long; naming conventions in the
standard library can be wildly inconsistent. Propositions as types as a foundation of
proof is present but hidden.

I found myself keen to recast the course in Agda (Bove et al. 2009). In Agda, there is
no longer any need to learn about tactics: there is just dependently-typed programming,
plain and simple. Introduction is always by a constructor, elimination is always by pat-
tern matching. Induction is no longer a mysterious separate concept, but corresponds
to the familiar notion of recursion. Mixfix syntax is flexible while using just one name
for each concept, e.g., substitution is _[_:=_]. The standard library is not perfect, but
there is a fair attempt at consistency. Propositions as types as a foundation of proof is
on proud display.

Alas, there is no textbook for programming language theory in Agda. Verified Func-
tional Programming in Agda by (Stump 2016) covers related ground, but focusses more
on programming with dependent types than on the theory of programming languages.

The original goal was to simply adapt Software Foundations, maintaining the same
text but transposing the code from Coq to Agda. But it quickly became clear to me that
after five years in the classroom I had my own ideas about how to present the material.
They say you should never write a book unless you cannot notwrite the book, and I soon
found that this was a book I could not not write.

I am fortunate that my student, Wen Kokke, was keen to help. She guided me as a
newbie to Agda and provided an infrastructure that is easy to use and produces pages
that are a pleasure to view. The bulk of the book was written January–June 2018, while
on sabbatical in Rio de Janeiro.

This paper is a personal reflection, summarising what I learned in the course of
writing the textbook. Some of it reiterates advice that is well-known to somemembers of
the dependently-typed programming community, but which deserves to be better known.
The paper is organised as follows.

Section 2 outlines the topics covered in PLFA, and notes what is omitted.



Programming Language Foundations in Agda 3

Section 3 compares Agda and Coq as vehicles for pedagogy. Before writing the
book, it was not obvious that it was even possible; conceivably, without tactics some
of the proofs balloon in size. In fact, it turns out that for the results in PLFA and SF, the
proofs are of roughly comparable size, and (in my opinion) the proofs in PLFA are more
readable and have a pleasing visual structure.

Section 4 observes that constructive proofs of progress and preservation combine
trivially to produce a constructive evaluator for terms. This idea is obvious once you
have seen it, yet I cannot find it described in the literature. For instance, SF separately
implements a normalise tactic that has nothing to do with progress and preservation.

Section 5 claims that raw terms should be avoided in favour of inherently-typed
terms. PLFA develops lambda calculus with both raw and inherently-typed terms, per-
mitting a comparison. It turns out the former is less powerful—it supports substitution
only for closed terms—but significantly longer—about 1.6 times as many lines of code,
roughly the golden ratio.

I will argue that Agda has advantages over Coq for pedagogic purposes. My focus is
purely on the case of a proof assistant as an aid to learning formal semantics using ex-
amples of modest size. I admit up front that there are many tasks for which Coq is better
suited than Agda. A proof assistant that supports tactics, such as Coq or Isabelle, is es-
sential for formalising serious mathematics, such as the Four-Colour Theorem (Gonthier
2008), the Odd-Order Theorem (Gonthier et al. 2013), or Kepler’s Conjecture (Hales
et al. 2017), or for establishing correctness of software at scale, as with the CompCert
compiler (Leroy 2009; Kästner et al. 2017) or the SEL4 operating system (Klein et al.
2009; O’Connor et al. 2016).

2 Scope

PLFA is aimed at students in the last year of an undergraduate honours programme or the
first year of a master or doctorate degree. It aims to teach the fundamentals of operational
semantics of programming languages, with simply-typed lambda calculus as the central
example. The textbook is written as a literate script in Agda. As with SF, the hope is
that using a proof assistant will make the development more concrete and accessible to
students, and give them rapid feedback to find and correct misaprehensions.

The book is broken into two parts. The first part, Logical Foundations, develops the
needed formalisms. The second part, Programming Language Foundations, introduces
basic methods of operational semantics. (SF is divided into books, the first two of which
have the same names as the two parts of PLFA, and cover similar material.)

Each chapter has both a one-word name and a title, the one-word name being both
its module name and its file name.

Part I, Logical Foundations

Naturals: Natural numbers Introduces the inductive definition of natural numbers in
terms of zero and successor, and recursive definitions of addition, multiplication, and
monus. Emphasis is put on how a tiny description can specify an infinite domain.



4 P. Wadler

Induction: Proof by induction Introduces induction to prove properties such as asso-
ciativity and commutativity of addition. Also introduces dependent functions to express
universal quantification. Emphasis is put on the correspondence between induction and
recursion.
Relations: Inductive definitions of relations Introduces inductive definitions of less than
or equal on natural numbers, and odd and even natural numbers. Proves properties such
as reflexivity, transitivity, and anti-symmetry, and that the sum of two odd numbers is
even. Emphasis is put on proof by induction over evidence that a relation holds.
Equality: Equality and equational reasoning Gives Martin Löf’s and Leibniz’s defi-
nitions of equality, and proves them equivalent, and defines the notation for equational
reasoning used throughout the book.
Isomorphism: Isomorphism and embedding Introduces isomorphism, which plays an
important role in the subsequent development. Also introduces dependent records, lambda
terms, and extensionality.
Connectives: Conjunction, disjunction, and implication Introduces product, sum, unit,
empty, and function types, and their interpretations as connectives of logic under Propo-
sitions as Types. Emphasis is put on the analogy between these types and product, sum,
unit, zero, and exponential on naturals; e.g., product of numbers is commutative and
product of types is commutative up to isomorphism.
Negation: Negation, with intuitionistic and classical logic Introduces logical negation
as a function into the empty type, and explains the difference between classical and
intuitionistic logic.
Quantifiers: Universals and existentials Recaps universal quantifiers and their corre-
spondence to dependent functions, and introduces existential quantifiers and their cor-
respondence to dependent products.
Lists: Lists and higher-order functions Gives two different definitions of reverse and
proves them equivalent. Introduces map and fold and their properties, including that
fold left and right are equivalent in a monoid. Introduces predicates that hold for all or
any member of a list, with membership as a specialisation of the latter.
Decidable: Booleans and decision procedures Introduces booleans and decidable types,
and why the latter is to be preferred to the former.

Part II, Programming Language Foundations

Lambda: Introduction to lambda calculus Introduces lambda calculus, using a repre-
sentation with named variables and a separate typing relation. The language used is PCF,
with variables, lambda abstraction, application, zero, successor, case over naturals, and
fixpoint. Reduction is call-by-value and restricted to closed terms.



Programming Language Foundations in Agda 5

Properties: Progress and preservation Proves key properties of simply-typed lambda
calculus, including progress and preservation. Progress and preservation are combined
to yield an evaluator.
DeBruijn: Inherently typed de Bruijn representation Introduces de Bruijn numbers and
the inherently-typed representation. Emphasis is put on the structural similarity between
a term and its corresponding type derivation; in particular, de Bruijn numbers corre-
spond to the judgment that a variable is well-typed under a given environment.
More: More constructs of simply-typed lambda calculus Introduces product, sum, unit,
and empty types as well as lists and let bindings are explained. Typing and reduction
rules are given informally; a few are then give formally, and the rest are left as exercises
for the reader. The inherently typed representation is used.
Bisimulation: Relating reduction systems Shows how to translate the languagewith “let”
terms to the language without, representing a let as an application of an abstraction, and
shows how to relate the source and target languages with a bisimulation.
Inference: Bidirectional type inference Introduces bidirectional type inference, and ap-
plies it to convert from a representation with named variables and a separate typing
relation to a representation de Bruijn indices with inherent types.
Untyped: Untyped calculus with full normalisation As a variation on earlier themes, dis-
cusses an untyped (but inherently scoped) lambda calculus. Reduction is call-by-name
over open terms, with full normalisation (including reduction under lambda terms). Em-
phasis is put on the correspondence between the structure of a term and evidence that it
is in normal form.

Discussion
PLFA and SF differ in several particulars. PLFA begins with a computationally com-
plete language, PCF, while SF begins with a minimal language, simply-typed lambda
calculus with booleans. PLFA does not include type annotations in terms, and uses bidi-
rectional type inference, while SF has terms with unique types and uses type checking.
SF also covers a simple imperative language with Hoare logic, subtyping, record types,
mutable references, and normalisation none of which are treated by PLFA. PLFA covers
an inherently-typed de Bruijn representation, bidirectional type inference, bisimulation,
and an untyped call-by-value language with full normalisation, none of which are treated
by SF.

SF has a third volume, written byAndrewAppel, on Verified Functional Algorithms.
I’m not sufficiently familiar with that volume to have a view on whether it would be easy
or hard to cover that material in Agda.

There is more material that would be desirable to include in PLFAwhich was not due
to limits of time. In future years, PLFA may be extended to cover additional material,
including mutable references, normalisation, System F, pure type systems, and deno-
tational semantics. I’d especially like to include pure type systems as they provide the
readers with a formal model close to the dependent types used in the book. My attempts
so far to formalise pure type systems have proved challenging.



6 P. Wadler

Fig. 1. PLFA, Progress (1/2)

3 Proofs in Agda and Coq

The introduction listed several reasons for preferring Agda over Coq. But Coq tactics
enable more compact proofs. Would it be possible for PLFA to cover the same material
as SF, or would the proofs balloon to unmanageable size?

As an experiment, I first rewrote SF’s development of simply-typed lambda calculus
(SF, Chapters Stlc and StlcProp) in Agda. I was a newbie to Agda, and translating the
entire development, sticking as closely as possible to the development in SF, took me
about two days. I was pleased to discover that the proofs remained about the same size.

There was also a pleasing surprise regarding the structure of the proofs. While most
proofs in both SF and PLFA are carried out by induction over the evidence that a term
is well typed, in SF the central proof, that substitution preserves types, is carried out by
induction on terms, not evidence of typing, for a technical reason (the context is extended
by a variable binding, and hence not sufficiently “generic” to work well with Coq’s



Programming Language Foundations in Agda 7

Fig. 2. PLFA, Progress (2/2)



8 P. Wadler

Fig. 3. SF, Progress (1/2)

induction tactic). In Agda, I had no trouble formulating the same proof over evidence
that the term is well typed, and didn’t even notice SF’s description of the issue until I
was done.

The rest of the book was relatively easy to complete. The closest to an issue with
proof size arose when proving that reduction is deterministic. There are 18 cases, one
case per line. Ten of the cases deal with the situation where there are potentially two
different reductions; each case is trivially shown to be impossible. Five of the ten cases
are redundant, as they just involve switching the order of the arguments. I had to copy
the cases suitably permuted. It would be preferable to reinvoke the proof on switched
arguments, but this would not pass Agda’s termination checker since swapping the argu-
ments doesn’t yield a recursive call on structurally smaller arguments. (I suspect tactics
could cut down the proof significantly. I tried to compare with SF’s proof that reduction
is deterministic, but failed to find that proof.)

SF covers an imperative language with Hoare logic, culminating in code that takes
an imperative programme suitably decorated with preconditions and postconditions and



Programming Language Foundations in Agda 9

Fig. 4. SF, Progress (2/2)

generates the necessary verification conditions. The conditions are then verified by a
custom tactic, where any questions of arithmetic are resolved by the “omega” tactic
invoking a decision procedure. The entire exercise would be easy to repeat in Agda,
save for the last step: I suspect Agda’s automation would not be up to verifying the
generated conditions, requiring tedious proofs by hand. However, I had already decided
to omit Hoare logic in order to focus on lambda calculus.

To give a flavour of how the texts compare, I show the proof of progress for simply-
typed lambda calculus from both texts. Figures 1 and 2 are taken from PLFA, Chapter
Properties, while Figures 3 and 4 are taken from SF, Chapter StlcProp. Both texts are
intended to be read online, and the figures were taken by grabbing bitmaps of the text
as displayed in a browser.



10 P. Wadler

PLFA puts the formal statements first, followed by informal explanation. PLFA in-
troduces an auxiliary relation Progress M to capture progress; an exercise (not shown)
asks the reader to show it isomorphic to the usual formulation with a disjunction and
an existential. Layout is used to present the auxiliary relation in inference rule form. In
Agda, any line beginning with two dashes is treated as a comment, making it easy to use
a line of dashes to separate hypotheses from conclusion in inference rules. The proof is
layed out carefully, with a neat indented structure to emphasise the case analysis, and
all right-hand sides lined-up in the same column. My hope as an author is that students
will read the formal proof first, and use it as a tabular guide to the informal explanation
that follows.

SF puts the informal explanation first, followed by the formal proof. The text hides
the formal proof script under an icon; the figures shows what appears when the icon is
expanded. As a teacher I was aware that students might skip it on a first reading, and I
would have to hope the students would return to it and step through it with an interactive
tool in order to make it intelligible. I expect the students skipped over many such proofs.
This particular proof forms the basis for a question of the mock exam and the past exams,
so I expect most students will actually look at this one if not all the others.

Both Coq and Agda support interactive proof. Interaction in Coq is supported by
Proof General, based on Emacs, or by CoqIDE, which provides an interactive develop-
ment environment of a sort familiar to most students. Interaction in Agda is supported
by an Emacs mode.

In Coq, interaction consists of stepping through a proof script, at each point examin-
ing the current goal and the variables currently in scope, and executing a new command
in the script. Tactics are a whole sublanguage, which must be learned in addition to
the langauge for expressing specifications. There are many tactics one can invoke in the
script at each point; one menu in CoqIDE lists about one hundred tactics one might
invoked, some in alphabetic submenus. A Coq script presents the specification proved
and the tactics executed. Interaction is recorded in a script, which the students may step
through at their leisure. SF contains some prose descriptions of stepping through scripts,
but mainly contains scripts that students are encouraged to step through on their own.

In Agda, interaction consists of writing code with holes, at each point examining
the current goal and the variables in scope, and typing code or executing an Emacs
command. The number of commands available is much smaller than with Coq, the most
important ones being to show the type of the hole and the types of the variables in scope;
to check the code; to do a case analysis on a given variable; or to guess how to fill in the
hole with constructors or variables in scope. An Agda proof consists of typed code. The
interaction is not recorded. Students may recreate it by commenting out bits of code and
introducing a hole in their place. PLFA contains some prose descriptions of interactively
building code, but mainly contains code that students can read. They may also introduce
holes to interact with the code, but I expect this will be rarer than with SF.

SF encourages students to interact with all the scripts in the text. Trying to under-
stand a Coq proof script without running it interactively is a bit like understanding a
chess game by reading through the moves without benefit of a board, keeping it all in
your head. In contrast, PLFA provides code that students can read. Understanding the
code often requires working out the types, but (unlike executing a Coq proof script) this



Programming Language Foundations in Agda 11

is often easy to do in your head; when it is not easy, students still have the option of
interaction.

While students are keen to interact to create code, I have found they are reluctant to
interact to understand code created by others. For this reason, I suspect this may make
Agda a more suitable vehicle for teaching. Nate Foster suggests this hypothesis is ripe to
be tested empirically, perhaps using techniques similar to those of Danas et al. (2017).

Neat layout of definitions such as that in Figure 2 in Emacs requires a monospaced
font supporting all the necessary characters. Securing one has proved tricky. As of this
writing, we use FreeMono, but it lacks a few characters (⦂ and ∎) which are loaded from
fonts with a different width. Long arrows are necessarily more than a single character
wide. Instead, we compose reduction —→ from an em dash — and an arrow →. Simi-
larly for reflexive and transitive closure —↠.

4 Progress + Preservation = Evaluation

A standard approach to type soundness used by many texts, including SF and PLFA, is
to prove progress and preservation, as first suggested by Wright and Felleisen (1994).
Theorem 1 (Progress). Given termM and type A such that ∅ ⊢ M ∶ A then eitherM
is a value orM ⟶ N for some term N .

Theorem 2 (Preservation). Given terms M and N and type A such that ∅ ⊢ M ∶ A
andM ⟶ N , then ∅ ⊢ N ∶ A.

A consequence is that when a term reduces to a value it retains the same type. Fur-
ther, well-typed terms don’t get stuck: that is, unable to reduce further but not yet reduced
to a value. The formulation neatly accommodates the case of non-terminating reductions
that never reach a value.

One useful by-product of the formal specification of a programming language may
be a prototype implementation of that language. For instance, given a language specified
by a reduction relation, such as lambda calculus, the prototype might accept a term and
apply reductions to reduce it to a value. Typically, one might go to some extra work to
create such a prototype. For instance, SF introduces a normalize tactic for this pur-
pose. Some formal methods frameworks, such as Redex (Felleisen et al. 2009) and K
(Roşu and Şerbănuţă 2010), advertise as one of their advantages that they can generate
a prototype from descriptions of the reduction rules.

I was therefore surprised to realise that any constructive proof of progress and preser-
vation automatically gives rise to such a prototype. The input is a term together with
evidence the term is well-typed. (In the inherently-typed case, these are the same thing.)
Progress determines whether we are done, or should take another step; preservation pro-
vides evidence that the new term is well-typed, so we may iterate. In a language with
guaranteed termination, we cannot iterate forever, but there are a number of well-known
techniques to address that issue; see, e.g., Bove and Capretta (2001), Capretta (2005),
or McBride (2015). We use the simplest, similar to McBride’s petrol-driven (or step-
indexed) semantics: provide a maximum number of steps to execute; if that number



12 P. Wadler

Fig. 5. PLFA, Evaluation



Programming Language Foundations in Agda 13

proves insufficient, the evaluator returns the term it reached, and one can resume execu-
tion by providing a new number.

Such an evaluator from PLFA is shown in Figure 5, where (inspired by McBride
and cryptocurrencies) the number of steps to execute is referred to as gas. All of the
example reduction sequences in PLFA were computed by the evaluator and then edited
to improve readability; in addition, the text includes examples of running the evaluator
with its unedited output.

It is immediately obvious that progress and preservation make it trivial to construct
a prototype evaluator, and yet I cannot find such an observation in the literature nor
mentioned in an introductory text. It does not appear in SF, nor in Harper (2016). A
plea to the Agda mailing list failed to turn up any prior mentions. The closest related
observation I have seen in the published literature is that evaluators can be extracted
from proofs of normalisation (Berger 1993; Dagand and Scherer 2015).

(Late addition: My plea to the Agda list eventually bore fruit. Oleg Kiselyov directed
me to unpublished remarks on his web page where he uses the name eval for a proof
of progress and notes “the very proof of type soundness can be used to evaluate sample
expressions” Kiselyov (2009).)

5 Inherent typing is golden

The second part of PLFA first discusses two different approaches to modelling simply-
typed lambda calculus. It first presents “raw” terms with named variables and a separate
typing relation and then shifts to inherently-typed terms with de Bruijn indices. Before
writing the text, I had thought the two approaches complementary, with no clear winner.
Now I am convinced that the inherently-typed approach is superior.

The clearest indication comes from counting lines of code. Stripping out examples
and any proofs that appear in one but not the other, the development for raw terms takes
451 lines (216 lines of definitions and 235 lines for the proofs) and the development
for inherently typed terms takes 275 lines (with definitions and proofs interleaved, as
substitution cannot be defined without also showing it preserves types). We have 451 /
235 = 1.64, close to the golden ratio.

Another indication is expressive power. The approach with named variables and
separate typing is restricted to substitution of one variable by a single closed term, while
de Bruijn indices with inherent typing support simultaneous substitution of all variables
by open terms, using a pleasing formulation due toMcBride (2005), inspired by Goguen
and McKinna (1997) and described in Allais et al. (2017). In fact, I managed to extend
McBride’s approach to support raw terms with named variables, but the resulting code
was too long and too complex for use in an introductory text, requiring 695 lines of
code—more than the total for the other two approaches combined.

The text develops both approaches because named variables with separate typing is
more familiar, and placing de Bruijn indices and inherent typing first would lead to a
steep learning curve. By presenting the more long-winded but less powerful approach
first, students can see for themselves the advantages of de Bruijn indices with inherent
typing.



14 P. Wadler

There are actually four possible designs, as the choice of named variables vs de
Bruijn indices, and the choice of raw vs inherently-typed terms may be made indepen-
dently. There are synergies beween the two. Manipulation of de Bruijn indices can be
notoriously error-prone without inherent-typing to give assurance of correctness. In in-
herent typing with named variables, simultaneous substitution by open terms remains
difficult.

The benefits of replacing raw typing by inherent are well known to some. The tech-
nique was introduced by Altenkirch and Reus (1999), and widely used elsewhere, no-
tably by Chapman (2009) and Allais et al. (2017). I’m grateful to David Darais for bring-
ing it to my attention.

6 Conclusion

I look forward to experience teaching from the new text, and encourage others to use it
too. Please comment!
Acknowledgements A special thank you tomy coauthor,WenKokke. For inventing ideas
on which PLFA is based, and for hand-holding, many thanks to Conor McBride, James
McKinna, Ulf Norell, and Andreas Abel. For showing me how much more compact it is
to avoid raw terms, thanks to David Darais. For inspiring my work by writing SF, thanks
to Benjamin Pierce and his coauthors. For comments on a draft of this paper, an extra
thank you to James McKinna, Ulf Norell, Andreas Abel, and Benjamin Pierce.



Bibliography

Guillaume Allais, James Chapman, Conor McBride, and James McKinna. Type-and-
scope safe programs and their proofs. In Proceedings of the 6th ACM SIGPLAN
Conference on Certified Programs and Proofs, pages 195–207. ACM, 2017.

Thorsten Altenkirch and Bernhard Reus. Monadic presentations of lambda terms using
generalized inductive types. In International Workshop on Computer Science Logic,
pages 453–468. Springer, 1999.

Ulrich Berger. Program extraction from normalization proofs. In International Confer-
ence on Typed Lambda Calculi and Applications, pages 91–106. Springer, 1993.

Ana Bove and Venanzio Capretta. Nested general recursion and partiality in type theory.
In International Conference on Theorem Proving in Higher Order Logics, pages 121–
125. Springer, 2001.

Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of agda–a functional language
with dependent types. In International Conference on Theorem Proving in Higher
Order Logics, pages 73–78. Springer, 2009.

Venanzio Capretta. General recursion via coinductive types. Logical Methods in Com-
puter Science, 1(2), 2005.

James Maitland Chapman. Type checking and normalisation. PhD thesis, University of
Nottingham, 2009.

Pierre-Évariste Dagand and Gabriel Scherer. Normalization by realizability also eval-
uates. In Vingt-sixièmes Journées Francophones des Langages Applicatifs (JFLA
2015), 2015.

Natasha Danas, Tim Nelson, Lane Harrison, Shriram Krishnamurthi, and Daniel J
Dougherty. User studies of principled model finder output. In International Confer-
ence on Software Engineering and Formal Methods, pages 168–184. Springer, 2017.

Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics engineering
with PLT Redex. By Press, 2009.

Healfdene Goguen and James McKinna. Candidates for substitution. Technical report,
Laboratory for Foundations of Computer Science, University of Edinburgh, 1997.

Georges Gonthier. The four colour theorem: Engineering of a formal proof. InComputer
mathematics, pages 333–333. Springer, 2008.

Georges Gonthier, Andrea Asperti, Jeremy Avigad, et al. A machine-checked proof of
the odd order theorem. In International Conference on Interactive Theorem Proving,
pages 163–179. Springer, 2013.

Thomas Hales, Mark Adams, Gertrud Bauer, Tat Dat Dang, John Harrison, Hoang
Le Truong, Cezary Kaliszyk, Victor Magron, Sean McLaughlin, Tat Thang Nguyen,
et al. A formal proof of the Kepler conjecture. InForum ofMathematics, Pi, volume 5.
Cambridge University Press, 2017.

Robert Harper. Practical foundations for programming languages. Cambridge Univer-
sity Press, 2016.

Gérard Huet, Gilles Kahn, and Christine Paulin-Mohring. The Coq proof assistant a
tutorial. Rapport Technique, 178, 1997.



16 P. Wadler

Daniel Kästner, Xavier Leroy, Sandrine Blazy, Bernhard Schommer, Michael Schmidt,
and Christian Ferdinand. Closing the gap–the formally verified optimizing compiler
compcert. In SSS’17: Safety-critical Systems Symposium 2017, pages 163–180. Cre-
ateSpace, 2017.

Oleg Kiselyov. Formalizing languages, mechanizing type-soundess and other meta-
theoretic proofs, 2009. URL http://okmij.org/ftp/formalizations/index.html.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, et al.
sel4: Formal verification of an os kernel. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, pages 207–220. ACM, 2009.

Xavier Leroy. Formal verification of a realistic compiler. Communications of the ACM,
52(7):107–115, 2009.

Conor McBride. Type-preserving renaming and substitution, 2005. unpublished
manuscript.

Conor McBride. Turing-completeness totally free. In International Conference on
Mathematics of Program Construction, pages 257–275. Springer, 2015.

Liam O’Connor, Zilin Chen, Christine Rizkallah, Sidney Amani, Japheth Lim, Toby
Murray, Yutaka Nagashima, Thomas Sewell, and Gerwin Klein. Refinement through
restraint: Bringing down the cost of verification. In ICFP, pages 89–102, 2016.

Benjamin C Pierce. Lambda, The Ultimate TA. In ICFP, pages 121–22, 2009.
Benjamin C Pierce and C Benjamin. Types and programming languages. MIT press,
2002.

Benjamin C Pierce, Chris Casinghino, Marco Gaboardi, Michael Greenberg, Cătălin
Hriţcu, Vilhelm Sjöberg, and Brent Yorgey. Software foundations. 2010. URL
\url{http://www.cis.upenn.edu/bcpierce/sf/current/index.html}.

Grigore Roşu and Traian Florin Şerbănuţă. An overview of the K semantic framework.
Journal of Logic and Algebraic Programming, 79(6):397–434, 2010.

Aaron Stump. Verified functional programming in Agda. Morgan & Claypool, 2016.
Andrew K Wright and Matthias Felleisen. A syntactic approach to type soundness.
Information and computation, 115(1):38–94, 1994.


