
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Taking Probabilistic NetKAT to the Limit

ANONYMOUS AUTHOR(S)

We develop new techniques for reasoning about probabilistic network programs. The core of our approach

is based on a semantic characterization of the history-free fragment of Probabilistic NetKAT in terms of

finite-state, absorbing Markov chains. The key technical challenge lies in computing the semantics of the

iteration operator, which we handle using an encoding in the style of a small-step operational semantics. We

present a prototype implementation and develop heuristic optimizations that enable it to scale to networks of

realistic size. Using examples, we show how our method can be used to establish generic properties such as

program equivalence and refinement, as well as program-specific properties such as resilience to failures. We

compare the scalability of our implementation against a state-of-the art tool, and we develop an extended case

study involving a recently proposed design for data center networks.

1 INTRODUCTION Take it to the limit, take it to the limit
Take it to the limit one more time.

—The Eagles

Networks are some of the most complex and critical computer systems used today. As such,

researchers have long sought to develop automated techniques for modeling and analyzing their

behavior [49]. Over the last decade, the emergence of tools for applying ideas from programming

language to problems in networking [6, 7, 35] has opened up new avenues for reasoning about

networks in a rigorous and principled way [4, 14, 26, 28]. Building on these initial advances,

researchers have started to target more sophisticated networks that exhibit richer phenomena.

In particular, there is renewed attention on randomization, both as a tool for designing network

protocols and for modeling the subtle behaviors that arise in large-scale systems—e.g., uncertainty

about the inputs to the network as well as device and link failures. Although programming languages

for describing randomized protocols exist [13, 17], support for automated reasoning about such

programs remains quite limited. The key challenges stem from the fact that even basic properties

are often quantitative properties of probability distributions in disguise, and seemingly simple

programs can generate highly complex distributions, especially in the presence of iteration. The

(un)decidability of elementary questions, such as program equivalence and satisfiability, have been

difficult to settle in the probabilistic setting, except in certain special cases [20, 25].

This paper develops new techniques for reasoning about programs in ProbNetKAT, a probabilistic

language for modeling and reasoning about packet-switched networks. As its name suggests,

ProbNetKAT is based on NetKAT [4, 14], which is in turn based on Kleene algebra with tests

(KAT), an algebraic system combining Boolean predicates and regular expressions. ProbNetKAT

extends NetKAT with a random choice operator and a semantics based on Markov kernels [13, 45].

ProbNetKAT can be used to implement randomized protocols (e.g., selecting forwarding paths to

balance load [31, 46]); to describe uncertainty about traffic demands (e.g., the diurnal fluctuations

commonly seen in wide-area networks [39]); and to model failures (e.g., of switches and links [19]).

Many properties of interest can be encoded using ProbNetKAT—more specifically, as quantitative

properties of the distributions on output packets produced for various inputs. Hence, if we had a

way to compute these distributions exactly, it would be straightforward to build tools that could

verify quantitative network properties automatically. However, the semantics of ProbNetKAT is

surprisingly subtle: using the iteration operator (i.e., the Kleene star from regular expressions), it

is possible to write programs that generate continuous distributions over an uncountable space

of packet history sets [13, Theorem 3]. Accordingly, computing the semantics of ProbNetKAT

programs involves representing and manipulating infinitary objects.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Anon.

Prior work [45] developed a domain-theoretic characterization of ProbNetKAT that produces

a finite approximation of the semantics on any input. Unfortunately, this work did not provide

guarantees on how fast the approximations converge, and so it does not lead to an algorithm for

computing the semantics directly. Fortunately, as we explain below, it turns out that the full power

of ProbNetKAT is not needed to solve many of the problems that arise in practice. By shifting

to a more restricted model—the so-called history-free fragment of the language—we can develop

an algorithm for exactly computing the output distributions of a program on all possible inputs.

The resulting finite, closed-form representation precisely characterizes the semantics of a given

ProbNetKAT program, allowing probabilities of output events to be effectively computed.

The foundation of our approach is based on a novel representation of ProbNetKAT programs as

finite-state Markov chains. By carefully designing this encoding, the limiting distribution of the

Markov chain can be computed efficiently and exactly in closed form, giving a concise presentation

of the semantics. More specifically, we define a big-step semantics that models each program using

a Markov chain that transitions from input to output in a single step, or equivalently, a finite

stochastic matrix. While these matrices can be easily computed for simple program constructs, it

is not straightforward for the iteration operator—intuitively, the finite matrix needs to somehow

capture the result of an infinite stochastic process. To address this challenge, we encode programs

using a refined Markov chain with a larger state space, modeling iteration in the style of a small-step
semantics. With some care, this chain can be transformed to an absorbing Markov chain, from

which we derive a closed-form solution for the limit behavior using elementary matrix calculations.

We prove the soundness of this approach with respect to the denotational semantics [45].

Although the history-free fragment of ProbNetKAT is a restriction of the full language, it captures

the input-output behavior of the network and so is still expressive enough to handle a wide

range of practical problems. In fact, most contemporary deterministic verification tools, including

Anteater [34], Header Space Analysis [26], and Veriflow [28], are also based on history-free models.

To reason about properties that involve paths (e.g., waypointing, isolation, loop-freedom), one can

check a series of input-output properties, one for each hop in the path, or augment the program

with extra state to record the path directly. In our ProbNetKAT implementation, working with

history-free programs has an important practical benefit: it reduces the space requirements by an

exponential factor, making it feasible to analyze complex protocols in large topologies.

Automated reasoning for probabilistic systems is an active research area with a rich history,

and there are now numerous tools based on probabilistic model checking (e.g., Dehnert et al.

[9], Kwiatkowska et al. [32]) and symbolic inference (e.g., Gehr et al. [18]). Hence, it is natural to

ask whether one could simply encode probabilistic networks using an existing general-purpose tool.

For instance, probabilistic model checking can be used to automatically reason about probabilistic

Markov chains. However, it is worth noting that to use these tools in the context of networks, one

would need to somehow encode the behavior of the network as a Markov chain—a non-trivial task,

given that the encoding has a direct impact on solver performance. As we show in our evaluation,

there are significant benefits to focusing on a narrower programming model since it affords greater

control over computationally-expensive subroutines, and gives more opportunities for optimization.

In particular, because the Markov chains manipulated in our tool are of a particularly simple form,

the semantics can be computed using just a few calls to a highly optimized linear algebra package.

We have built a prototype implementation of our approach in OCaml. Given a program as input,

it computes a stochastic matrix that models its semantics in a finite and explicit form, using the

UMFPACK linear algebra library [8] as a back-end solver to compute limiting distributions. To make

the approach scale, our tool incorporates a number of optimizations and symbolic techniques to

compactly represent sparse matrices. Although building a highly-optimized implementation would

involve further engineering (and is not the primary focus of this paper), our prototype is already

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Taking Probabilistic NetKAT to the Limit 3

Switch 1 Switch 2

Switch 3

Source Destination

1 2
3

1
3

2

1 2

Fig. 1. Network topology for running example.

quite fast and is able to handle programs of moderate size. It also scales much better than a state-of-

the-art tool [17]—by more than two orders of magnitude on a representative benchmark program.

We have used our tool to carry out detailed case studies of probabilistic reasoning, analyzing the

resilience of different fault-tolerant routing schemes in the context of data center networks.

Contributions and outline. The main contribution of this paper is an approach for precisely

computing the full semantics of history-free ProbNetKAT programs. We develop a new, tractable

semantics in terms of stochastic matrices in two stages, we establish soundness with respect to Prob-

NetKAT’s original denotational model, we implement our method in a prototype implementation,

and we evaluate it on a realistic networking case study.

In §2 and §3, we review ProbNetKAT using a simple running example.

In §4, we present a semantics based on finite stochastic matrices and show that it fully characterizes

the behavior of ProbNetKAT programs (Theorem 4.1). In this semantics, the matrices encodeMarkov

chains over the state space 2
Pk
. A single step of this “big-step” chain models the entire execution of

a program, going directly from the initial state corresponding to the set of input packets to the

final state corresponding to the set of output packets. However, we still need a way to explicitly

compute the matrix for p∗, which is given as a limit.

In §5, we show how to compute the big-step matrix associated with p∗ in closed form. Note

that this is not simply the calculation of the stationary distribution of a Markov chain, as the

semantics of p∗ is more subtle. Instead, we define a second Markov chain with a larger state space

in which each “small-step” transition models one iteration of p∗. We then show how to transform

this finer Markov chain into an absorbing Markov chain, which admits a closed form solution

for its limiting distribution. Together, the big- and small-step semantics enable us to analytically

compute a finite representation of the program semantics. This result yields an effective procedure

for deciding program equivalence (Corollary 5.8)—i.e., simply compare matrix representations—and

is in contrast with the original denotational semantics [13], which provides only an approximation

theorem for the semantics of iteration p∗ and so is not suitable for deciding equivalence.

In §6, we describe an implementation of our method including symbolic data structures and

heuristic optimizations that are needed to handle the large state space efficiently and obtain good

performance. We evaluate the scalability of our tool on a common data center design and compare

its performance against Bayonet, a state-of-the-art probabilistic tool for analyzing networks.

In §7, we present real-world case studies that use the stochastic matrix representation to answer

questions about the resilience of data center networks in the presence of link failures.

We survey related work in §8 and conclude in §9. Detailed proofs are given in the appendix.

2 OVERVIEW
This section introduces a running examples that illustrates the main features of the ProbNetKAT

language as well as some quantitative network properties that arise in practice.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Anon.

2.1 A Crash Course in ProbNetKAT
Consider the network shown in Figure 1, which connects a source to a destination in a topology

with three switches. We will first develop a ProbNetKAT program that forwards packets from the

source to the destination, and then verify that it correctly implements the desired behavior by

reducing the verification problem to program equivalence. Next, we will show how to enrich our

program to model the possibility of link failures, and develop a fault-tolerant forwarding scheme

that automatically routes around failures. Using a quantitative version of program refinement, we

will show that the fault-tolerant program is indeed more resilient than the initial program. Finally,

we will show how to compute the expected resilience of each implementation analytically.

To a first approximation, a ProbNetKAT program can be thought of as a random function that

maps input packets to sets of output packets. Packets are modeled as records, with fields for standard

headers—such as the source (src) and destination (dst) addresses—as well as two fields switch (sw)
and port (pt) encoding the current location of the packet. ProbNetKAT provides several primitives

for manipulating packets. A modification f←n returns the input packet with the f field updated to

n. A test f =n either returns the input packet unmodified if the test succeeds, or returns the empty

set if the test fails. The primitives skip and drop behave like a test that always succeeds and fails,

respectively. Programs p,q can be composed in sequence (p ; q), in parallel (p & q), or iterated using

Kleene star p∗.
Although ProbNetKAT programs can be freely constructed by composing primitive operations,

a typical network model is expressed using a pair of programs: one that describes the forwarding

behavior of the switches, and another that describes the network topology. The overall model of

the network is obtained by composing these programs into a single program.

The forwarding policy describes how packets are transformed locally by the switches at each

hop. In our running example, to route packets from the source to the destination, switches 1 and

2 can simply forward all incoming packets out on port 2 by modifying the port field (pt). This
forwarding program can be encoded as a ProbNetKAT program that performs a case analysis on

the location of the input packet, and then sets the port field to 2:

p ≜ (sw=1 ; pt←2) & (sw=2 ; pt←2) & (sw=3 ; drop)

For the sake of completeness, we specify a policy for switch 3, even though it is unreachable.

The network topology governs how packets move between switches. To represent a simple

directed link between two switches, we match on packets located at the source location of the link

and update their locations to the destination end of the link. In our example network (Figure 1), a

link ℓi j from switch i to switch j , i is encoded as:

ℓi j ≜ sw=i ; pt=j ; sw←j ; pt←i

We can model the entire topology as the union of all links:

t ≜ ℓ12 & ℓ13 & ℓ32

To build the overall network model, we combine the forwarding policy p with the topology t .
A packet traversing the network is alternately processed by switches and links in the network,

repeating for as many steps as necessary. In ProbNetKAT:

M(p, t) ≜ (p ; t)∗ ; p

The model M(p, t) captures the behavior of the network on arbitrary input packets, including

packets that start or end at arbitrary locations in the interior of the network. It is sometimes useful

to consider such partial packet trajectories, but to restrict our attention to packets at the ingress

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Taking Probabilistic NetKAT to the Limit 5

and egress, we can wrap the program with additional predicates that identify the ingress and egress

of the topology,

in ≜ sw=1 ; pt=1 out ≜ sw=2 ; pt=2

and arrive at the full network model:

in ; M(p, t) ; out

To verify that p forwards packets to the destination, we can check the following equivalence:

in ; M(p, t) ; out ≡ in ; sw←2 ; pt←2

The program on the left-hand side of the equality is the implementation, while the program on the

right-hand side can be thought of as a specification that “teleports” each packet to its destination.

Previous work [4, 14, 44] used similar reductions to equivalence in order to reason about properties

such as waypointing, reachability, isolation, loop freedom.

2.2 Probabilistic Programming and Reasoning.
Real-world networks often exhibit non-deterministic behaviors. For example, networks often use

randomized algorithms to balance traffic across multiple paths [31], or use fault tolerant routing

schemes to handle unexpected failures [33]. To ensure that the network behaves as expected

in these more complicated scenarios requires a form of probabilistic reasoning. Unfortunately,

state-of-the-art network verification tools [14, 26, 28] only model deterministic behaviors.

To illustrate the need for probabilistic reasoning, suppose that we want to extend our running

example to make it resilient to link failures. Most modern switches implement low-level protocols

such as Bidirectional Forwarding Detection (BFD) to compute real-time healthiness information

about the physical link connected to each port [5]. Formally, we can enrich our model so that each

router has access to a boolean flag upi that is true if and only if the link connected to the switch at

port i is transmitting packets correctly. Then we can adjust the forwarding logic for switch 1 as

follows: if link ℓ12 is up, use the shortest path to switch 2 as before; otherwise, take a detour via

switch 3 and proceed to switch 2 from there:

p̂1 ≜ (up2=1 ; pt←2) & (up2=0 ; pt←3)

The programs for switches 2 and 3 are analogous. As before, we can encode the forwarding logic

for all switches into a single program:

p̂ ≜ (sw=1 ; p̂1) & (sw=2 ; p2) & (sw=3 ; p3)

Next, we update our encoding of the topology to take link failures into account. Links can fail for a

wide variety of reasons including mistakes by human operators, fiber cuts, and hardware errors. A

natural way to model these failures is with a probabilistic failure model—i.e., a distribution that

describes how often links fail. We can encode various failure models using ProbNetKAT:

f0 ≜ up2←1 ; up3←1

f1 ≜
⊕{

f0 @
1

2

, up2←0 ; up3←1 @

1

4

, up2←1 ; up3←0 @

1

4

}
f2 ≜ (up2←1 ⊕0.8 up2←0) ; (up2←1 ⊕0.8 up2←0)

In f0, no links fail. Intuitively, in f1, the links ℓ12 and ℓ13 fail with probability 25% each, but at most

one fails while in f2, the links fail independently with probability 20%. In either case, using these

flags, we can model a link that only forwards packets when it is up:

ℓ̂i j ≜ upi=1 ; ℓi j

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Anon.

Combining the policy, topology, and failure model, yields a refined model of the entire network:

M̂(p, t , f) ≜ var up2←1 in

var up3←1 in

M((f ; p), t)

This refined model M̂ wraps our previous modelM with declarations of the two local fields up2 and
up3 and executes the failure model (f) at each hop before executing the programs for the router (p)
and topology (t).
Now we can analyze our resilient routing scheme p̂. First, as a sanity check, we can verify that

in the absence of failures, it still correctly delivers packets to the destination using the following

equivalence:

in ; M̂(p̂, t̂ , f0) ; out ≡ in ; sw←2 ; pt←2

Next, we can verify that p̂ is 1-resilient—i.e., it delivers all packets provided at most one link fails.

Formally, it behaves like the program that “teleports” packets under failure model f1. This property
does not hold for the original, naive routing scheme p:

in ; M̂(p̂, t̂ , f1) ; out ≡ in ; sw←2 ; pt←2 . in ; M̂(p, t̂ , f1) ; out

Under failure model f2, two links may fail simultaneously and neither of routing schemes is 1-

resilient. However, we can still show that the refined routing scheme p̂ performs strictly better

than the naive scheme p,

M̂(p, t̂ , f2) < M̂(p̂, t̂ , f2)

where p < q means that q delivers all packets with higher probability than p. This relation can be

thought of as a quantitative version of program refinement.

We can establish a variety of properties such as reachability and other global invariants using

analogous reductions to equivalence and refinement. But we can also use ProbNetKAT to go a

step further and compute quantitative properties of the packet distribution generated the program

program. For example, we can compute the probability that each routing scheme delivers packets

to the destination under failure model f2. The answer is 80% for the naive scheme and 96% for the

resilient scheme. Such a computation could be used by an Internet Service Provider (ISP) when

evaluating the design of a topology and a routing scheme to check that it meets its service-level

agreements (SLA) with customers.

In §7 we will analyze a more sophisticated resilient routing scheme and see more complex

examples of qualitative and quantitative reasoning with ProbNetKAT drawn from real-world data

center networks. But first, we develop the theoretical machinery that underpins our approach.

3 BACKGROUND ON PROBABILISTIC NETKAT
This section reviews the syntax, semantics, and basic properties of ProbNetKAT [13, 45], focusing

on the history-free fragment. A synopsis appears in Figure 2.

3.1 Syntax
A packet π is a record mapping a finite set of fields f1, f2, . . . , fk to bounded integers n. As we saw in

the previous section, fields can include standard header fields such as source (src) and destination

(dst) addresses, as well as logical fields for modeling the current location of the packet in the

network or variables such as upi. These logical fields are not present in a physical network packet,

but they can track auxiliary information for the purposes of verification. We write π .f to denote

the value of field f of π and π [f :=n] for the packet obtained from π by updating field f to hold n.
We let Pk denote the set of all packets; note that this is a finite set.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Taking Probabilistic NetKAT to the Limit 7

ProbNetKAT can be divided into two classes: predicates (t ,u, . . .) and programs (p,q, . . .). Primitive

predicates include tests (f =n) and the Boolean constants false (drop) and true (skip). Compound

predicates are formed using the usual Boolean connectives: disjunction (t & u), conjunction (t ; u),
and negation (¬t). Primitive programs include predicates (t) and assignments (f←n). The full version
of the language also provides a dup primitives, which logs the current state of the packet, but we

omit this operator from the history-free fragment of the language considered in this paper; we

discuss technical challenges related to full ProbNetKAT in Appendix B.

Compound programs are formed using parallel composition (p & q), sequential composition (p ; q),
iteration (p∗), and probabilistic choice (p ⊕r q). The probabilistic choice operator p ⊕r q executes

p with probability r and q with probability 1 − r , where r is rational, 0 ≤ r ≤ 1. We often use an

n-ary version and omit the r ’s as in p1 ⊕ · · · ⊕ pn , which is interpreted as executing one of the pi
chosen with equal probability; this construct can be desugared into the binary version.

Inspired by Kleene algebra with tests, conjunction of predicates and sequential composition

of programs use the same syntax (t ; u and p ; q, respectively), as their semantics coincide. The

same is true for disjunction of predicates and parallel composition of programs (t & u and p & q,
respectively). The negation operator (¬) may only be applied to predicates.

Figure 2 presents the core features of the language, but many other useful constructs can be

derived. For instance, it is straightforward to encode conditionals and while loops:

if t then p else q ≜ t ; p & ¬t ; q while t do p ≜ (t ; p)∗ ; ¬t

These encodings are well known from KAT [30]. Mutable local variables (e.g., upi, used to track

link healthiness in the running example from §2), can also be desugared into the core language:

var f←n in p ≜ f←n ; p ; f←0

Here f is a field that is local to p. The final assignment f←0 sets the value of f to a canonical value,

which is semantically equivalent to “erasing” it after the field goes out of scope. We often use local

variables to record extra information for verification. For example, by using a local field to record

whether a packet traversed a given router, one can reason about simple waypointing and isolation

properties, even though the history-free fragment of ProbNetKAT does not directly model paths.

3.2 Semantics
In full ProbNetKAT, programs manipulate sets of packet histories—non-empty, finite sequences of

packets modeling trajectories through the network [13, 45]. The resulting state space is uncountable

andmodeling the semantics properly requires full-blownmeasure theory as some programs generate

continuous distributions. In the history-free fragment, programs manipulate sets of packets and

the state space is finite, which makes the semantics considerably simpler.

Proposition 3.1. Let L−M denote the semantics defined in [45]. Then for all dup-free programs p
and inputs a ∈ 2Pk, we have JpK(a) = LpM(a), where we identify packets and histories of length one.

Throughout this paper, we can work in the discrete space 2
Pk
, i.e., the set of sets of packets. An

outcome (denoted by lowercase variables a,b, c, . . .) is a set of packets and an event (denoted by

uppercase variables A,B,C, . . .) is a set of outcomes. Given a discrete probability measure on this

space, the probability of an event is the sum of the probabilities of its outcomes.

ProbNetKAT programs are interpreted as Markov kernels on the space 2
Pk
. A Markov kernel is a

function 2
Pk → D (2Pk) where D is the probability (or Giry) monad [21, 29]. Thus, a program p

maps an input set of packets a ∈ 2Pk to a distribution JpK(a) ∈ D (2Pk) over output sets of packets.
The semantics uses the following probabilistic constructions:

1

1
These can also be defined for uncountable spaces, as would be required to handle the full language.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Anon.

Syntax

Naturals n ::= 0 | 1 | 2 | · · ·

Fields f ::= f1 | · · · | fk
Packets Pk ∋ π ::= {f1 = n1, . . . , fk = nk }

Probabilities r ∈ [0, 1] ∩ Q

Predicates t ,u ::= drop False
| skip True
| f =n Test
| t & u Disjunction
| t ; u Conjunction
| ¬t Negation

Programs p,q ::= t Filter
| f←n Assignment
| p & q Union
| p ; q Sequence
| p ⊕r q Choice
| p∗ Iteration

Semantics JpK ∈ 2Pk → D (2Pk)

JdropK(a) ≜ δ (∅)

JskipK(a) ≜ δ (a)

Jf =nK(a) ≜ δ ({π ∈ a | π . f = n})

Jf←nK(a) ≜ δ ({π [f :=n] | π ∈ a})
J¬tK(a) ≜ D (λb .a − b) (JtK(a))

Jp & qK(a) ≜ D (∪) (JpK(a) × JqK(a))
Jp ; qK(a) ≜ JqK† (JpK(a))

Jp ⊕r qK(a) ≜ r · JpK(a) + (1 − r) · JqK(a)
Jp∗K(a) ≜

⊔
n∈N

Jp (n)K(a)

where p (0) ≜ skip, p (n+1) ≜ skip & p ; p (n)

(Discrete) Probability Monad D

Unit δ : X → D (X) δ (x) ≜ δx

Bind −† : (X → D (Y)) → D (X) → D (Y)

f † (µ) (A) ≜
∑

x ∈X f (x) (A) · µ (x)

Fig. 2. ProbNetKAT core language: syntax and semantics.

• For a discrete measurable space X ,D (X) denotes the set of probability measures over X ; that

is, the set of countably additive functions µ : 2
X → [0, 1] with µ (X) = 1.

• For a measurable function f : X → Y ,D (f) : D (X) → D (Y) denotes the pushforward along

f ; that is, the function that maps a measure µ on X to

D (f) (µ) ≜ µ ◦ f −1 = λA ∈ ΣY . µ ({x ∈ X | f (x) ∈ A})

which is called the pushforward measure on Y .
• The unit δ : X → D (X) of the monad maps a point x ∈ X to the point mass (or Dirac
measure) δx ∈ D (X). The Dirac measure is given by

δx (A) ≜ 1[x ∈ A]

That is, the Dirac measure is 1 if x ∈ A and 0 otherwise.

• The bind operation of the monad,

−† : (X → D (Y)) → D (X) → D (Y)

lifts a function f : X → D (Y) with deterministic inputs to a function f † : D (X) → D (Y)
that takes random inputs. Intuitively, this is achieved by averaging the output of f when the

inputs are randomly distributed according to µ. Formally,

f † (µ) (A) ≜
∑
x ∈X

f (x) (A) · µ (x).

• Given two measures µ ∈ D (X) and ν ∈ D (Y), µ × ν ∈ D (X × Y) denotes their product
measure. This is the unique measure satisfying

(µ × ν) (A × B) = µ (A) · ν (B)

Intuitively, it models distributions over pairs of independent values.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Taking Probabilistic NetKAT to the Limit 9

Using these primitives, we can now make our operational intuitions precise (see Figure 2 for

formal definitions). A predicate t maps the set of input packets a ∈ 2
Pk

to the subset of packets

b ⊆ a satisfying the predicate (with probability 1). Hence, drop drops all packets (i.e., it returns

the empty set) while skip keeps all packets (i.e., it returns the input set). The test f =n returns the

subset of input packets whose f -field is n. Negation ¬t filters out the packets returned by t .
Parallel composition p&q executes p and q independently on the input set, then returns the union

of their results. Note that packet sets do not model nondeterminism, unlike the usual situation in

Kleene algebras—rather, they model collections of packets traversing possibly different portions

of the network simultaneously. In particular, the union operation is not idempotent: p & p need

not have the same semantics as p. Probabilistic choice p ⊕r q feeds the input to both p and q and

returns a convex combination of the output distributions according to r . Sequential composition

p ; q can be thought of as a two-stage probabilistic process: it first executes p on the input set to

obtain a random intermediate result, then feeds that into q to obtain the final distribution over

outputs. The outcome of q is averaged over the distribution of intermediate results produced by p.
We say that two programs are equivalent, denoted p ≡ q, if they denote the same Markov kernel,

i.e. if JpK = JqK. As usual, we expect Kleene star p∗ to satisfy the characteristic fixed point equation

p∗ ≡ skip&p ;p∗, which allows it to be unrolled ad infinitum. Thus we define it as the supremum of

its finite unrollings p (n) ; see Figure 2. This supremum is taken in a CPO (D (2Pk),⊑) of distributions
that is described in more detail in §3.3. The partial ordering ⊑ on packet set distributions gives

rise to a partial ordering on programs: we write p ≤ q iff JpK(a) ⊑ JqK(a) for all inputs a ∈ 2
Pk
.

Intuitively, p ≤ q iff p produces any particular output packet π with probability at most that of q
for any fixed input—q has a larger probability of delivering more output packets.

3.3 The CPO (D (2Pk),⊑)

The space 2
Pk

with the subset order forms a CPO (2Pk, ⊆). Following Saheb-Djahromi [40], this

CPO can be lifted to a CPO (D (2Pk),⊑) on distributions over 2
Pk
. Because 2

Pk
is a finite space, the

resulting ordering ⊑ on distributions takes a particularly easy form:

µ ⊑ ν ⇐⇒ µ ({a}↑) ≤ ν ({a}↑) for all a ⊆ Pk

where {a}↑ ≜ {b | a ⊆ b} denotes upward closure. Intuitively, ν produces more outputs then µ. As
was shown in [45], ProbNetKAT satisfies various monotonicity (and continuity) properties with

respect to this ordering, including

a ⊆ a′ =⇒ JpK(a) ⊑ JpK(a′) and n ≤ m =⇒ Jp (n)K(a) ⊑ Jp (m)K(a).

As a result, the semantics of p∗ as the supremum of its finite unrollings p (n) is well-defined.
While the semantics of full ProbNetKAT requires more domain theory to give a satisfactory

characterization of Kleene star, a simpler characterization suffices for the history-free fragment.

Lemma 3.2 (Pointwise Convergence). Let A ⊆ 2
Pk. Then for all programs p and inputs a ∈ 2Pk,

Jp∗K(a) (A) = lim

n→∞
Jp (n)K(a) (A).

4 BIG-STEP SEMANTICS
In this section we propose an alternative program semantics in terms of finite-state Markov chains.

While there are many possible translations of ProbNetKAT programs as Markov chains, we want

an encoding that will enable precise computation of the semantics of ProbNetKAT programs. The

design of this semantics requires some care, and we will proceed in two steps. We first present

a coarse, big-step style Markov chain semantics that is conceptually simple and can be precisely

computed for all program constructs with the exception of iteration. To handle iteration, we will

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Anon.

BJpK ∈ S(2Pk)

BJdropKab ≜ 1[b = ∅]

BJskipKab ≜ 1[a = b]

BJf =nKab ≜ 1[b = {π ∈ a | π . f = n}]

BJ¬tKab ≜ 1[b ⊆ a] · BJtKa,a−b
BJf←nKab ≜ 1[b = {π [f := n] | π ∈ a}]

BJp & qKab ≜
∑
c,d

1[c ∪ d = b] · BJpKa,c · BJqKa,d

BJp ; qK ≜BJpK · BJqK
BJp ⊕r qK ≜ r · BJpK + (1 − r) · BJqK

BJp∗Kab ≜ lim

n→∞
BJp (n)Kab

Fig. 3. Big-Step Semantics: BJpKab denotes the probability that program p produces output b on input a.

construct a finer, small-step style Markov chain semantics in the next section that is tailored to

iterative programs.

As we saw in §3, the denotational semantics of ProbNetKAT interprets programs as maps

2
Pk → D (2Pk). Since the set of packets Pk is finite, so is its powerset 2

Pk
. Thus any distribution

over packet sets is discrete and can be characterized by a probability mass function, i.e. a function

f : 2
Pk → [0, 1] such that

∑
b⊆Pk

f (b) = 1.

When working with Markov chains, it will be convenient to view f as a stochastic vector, i.e. a
vector of non-negative entries that sums to 1. The vector is indexed by packet sets b ⊆ Pk with b-th
component f (b). A program, being a function that maps inputs a to distributions over outputs, can

then be organized as a square matrix indexed by Pk in which the stochastic vector corresponding

to input a appears as the a-th row.

Thus we can interpret a program p as a matrix BJpK ∈ [0, 1]2Pk×2Pk indexed by packet sets, where

the matrix entry BJpKab gives the probability that p produces output b ∈ 2
Pk

on input a ∈ 2
Pk
.

The rows of BJpK are stochastic vectors, each encoding the output distribution corresponding to

a particular input set a; such a matrix is called (right-)stochastic. We denote by S(2Pk) the set of
right-stochastic square matrices indexed by 2

Pk
.

The interpretation of programs as stochasticmatrices is defined formally in Figure 3. Deterministic

program primitives are interpreted as (0, 1)-matrices—e.g., the program primitive drop is interpreted
as the stochastic matrix

BJdropK =

∅ b2 ... bn

∅ 1 0 · · · 0

...
...
...
. . .
...

an 1 0 · · · 0

a2

...

an

a1 = ∅

1

1

1 (1)

that assigns all probability mass to the ∅-column. Similarly, the primitive skip is interpreated as

the identity matrix. The formal definitions in Figure 3 use Iverson brackets: 1[φ] is 1 if φ is true,

and 0 otherwise.

As suggested by the picture in (1), a stochastic matrix B ∈ S(2Pk) can be viewed as aMarkov chain
(MC), a probabilistic transition system with state space 2

Pk
that makes a random transition between

states at each time step. The matrix entry Bab gives the probability that the system transitions to

state b starting from state a. Accordingly, sequential composition is interpreted by matrix product:

BJp ; qKab =
∑
c

BJpKac · BJqKcb = (BJpK · BJqK)ab .

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Taking Probabilistic NetKAT to the Limit 11

This equation reflects the intuitive semantics of sequential composition: a step from a to b in BJp ;qK
occurs via a step from a to some intermediate state c in BJpK, followed by a step from c to the final

state b in BJqK.

4.1 Soundness
The main theoretical result of this section is a proof that the finite matrix BJpK fully characterizes

the behavior of a program p on packets.

Theorem 4.1 (Soundness). For any program p and any sets a,b ∈ 2
Pk, BJp∗K is well-defined,

BJpK is a stochastic matrix, and BJpKab = JpK(a) ({b}).

As an application, checking program equivalence for p and q reduces to checking equality of the

big-step matrices BJpK and BJqK.

Corollary 4.2. For programs p and q, JpK = JqK if and only if BJpK = BJqK.

Because the big-step Markov chains are all finite state, the transition matrices are finite di-

mensional, with rationals as entries. Accordingly, program equivalence (and other quantitative

properties) can be automatically verified provided we can compute the big-step matrices for given

programs. This is straightforward for most program constructions, except BJp∗K: this matrix is

defined in terms of a limit. While we can approximate this matrix, we would like to compute it

exactly. The next section considers how to compute the semantics for iteration.

5 SMALL-STEP SEMANTICS
The semantics developed in the previous section can be viewed as a “big-step” semantics in which

a single step of the chain models the entire execution of a program from initial state a (the set of

input packets) to final state b (the set of output packets). To compute the semantics of iteration, we

will build a finer, “small-step” Markov chain where each transition models one iteration of p∗.
To develop intuition, first consider simulating p∗ using a transition system with states given by

triples

〈
p,a,b

〉
, consisting of a program p to be executed, a current set of (input) packets a, and an

accumulator set b of packets output so far. To model the execution of p∗ on input a ⊆ Pk, we start
from the initial state

〈
p∗,a,∅

〉
and unroll p∗ one iteration according to the characteristic equation

p∗ ≡ skip & p ; p∗, yielding the following transition:〈
p∗,a,∅

〉 1

−−−−−−−−−−→
〈
skip & p ; p∗,a,∅

〉
Then, we execute both skip and p ;p∗ on the input set and take the union of their results. To execute

skip, we immediately output the input set with probability 1:〈
skip & p ; p∗,a,∅

〉 1

−−−−−−−−−−→
〈
p ; p∗,a,a

〉
To execute the remaining component p ; p∗, we first execute p and then feed its output into p∗:

∀a′ :
〈
p ; p∗,a,a

〉 BJpKa,a′
−−−−−−−−−−→

〈
p∗,a′,a

〉
At this point the cycle closes and we are back to executing p∗, albeit with a different input set a′

and some additional accumulated output packets. The structure of the resulting Markov chain is

shown in Figure 4.

As the first two steps of execution are deterministic, we can simplify the transition system by

collapsing all three steps into one, as illustrated in Figure 4. Moreover, the program component can

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Anon.

〈
p∗,a,b

〉 〈
skip & p ; p∗,a,b

〉 〈
p ; p∗,a,b ∪ a

〉

〈
p∗,a′,b ∪ a

〉

1 1

BJpKa,a′
BJpKa,a ′

Fig. 4. The small-step semantics is given by a Markov chain whose states are configurations of the form〈
program, input set, output accumulator

〉
. The three dashed arrows can be collapsed into the single solid arrow,

rendering the program component superfluous.

also be dropped, as it remains constant across transitions. Hence, we work with a Markov chain

over the state space 2
Pk × 2Pk, defined formally as follows:

SJpK ∈ S(2Pk × 2Pk)
SJpK(a,b), (a′,b′) ≜ 1[b ′ = b ∪ a] · BJpKa,a′

As a sanity check, we can verify that the matrix SJpK indeed defines a Markov chain.

Lemma 5.1. SJpK is stochastic.

Next, we show that each step in SJpK models an iteration of p∗. Formally, the (n + 1)-step of

SJpK is equivalent to the big-step behavior of the n-th unrolling of p∗.

Proposition 5.2. BJp (n)Ka,b =
∑

a′ SJpKn+1
(a,∅), (a′,b)

Proof. Direct induction on the number of steps n ≥ 0 fails because the hypothesis is too weak. We

first generalize from start states with empty accumulator to arbitrary start states.

Lemma 5.3. Let p be program. Then for all n ∈ N and a,b,b ′ ⊆ Pk, we have∑
a′

1[b ′ = a′ ∪ b] · BJp (n)Ka,a′ =
∑
a′
SJpKn+1(a,b), (a′,b′) .

Proposition 5.2 then follows by instantiating Lemma 5.3 with b = ∅. □

Intuitively, the long-run behavior of SJpK approaches the big-step behavior of p∗: letting (an ,bn)
denote the random state of the Markov chain SJpK after taking n steps starting from (a,∅), the
distribution of bn for n → ∞ is precisely the distribution of outputs generated by p∗ on input a (by

Proposition 5.2 and the definition of BJp∗K). We show how to compute this limit next.

5.1 Closed form
The limiting behavior of finite state Markov chains has been well-studied in the literature (e.g.,
see [27]). For so-called absorbing Markov chains, the limit distribution can be computed exactly.

While the small-step chain SJpK may not be absorbing, with a bit of work we can convert it into an

absorbing Markov chain.

We will need some basic concepts from the theory of Markov chains. A state s of a Markov chain

T is absorbing if it transitions to itself with probability 1:

s 1 (formally: Ts,s ′ = 1[s = s ′])

A Markov chain T ∈ S(S) is absorbing if each state can reach an absorbing state:

∀s ∈ S . ∃s ′ ∈ S,n ≥ 0. T n
s,s ′ > 0 and Ts ′,s ′ = 1

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Taking Probabilistic NetKAT to the Limit 13

The non-absorbing states of an absorbing MC are called transient. Assume T is absorbing with nt
transient states and na absorbing states. After reordering the states so that absorbing states appear

before transient states, T has the form

T =

[
I 0

R Q

]

where I is thena×na identity matrix, R is annt ×na matrix giving the probabilities of transient states

transitioning to absorbing states, and Q is an nt × nt square matrix specifying the probabilities of

transient states transitioning to transient states. Since absorbing states never transition to transient

states by definition, the upper right corner contains a na × nt zero matrix.

From any start state, a finite state absorbing MC always ends up in an absorbing state eventually,

i.e. the limit T∞ ≜ limn→∞T
n
exists and has the form

T∞ =

[
I 0

A 0

]

where the nt × na matrix A contains the so-called absorption probabilities. This matrix satisfies the

following equation:

A = (I +Q +Q2 + . . .) R

Intuitively, to transition from a transient state to an absorbing state, the MC can take an arbitrary

number of steps between transient states before taking a single—and final—step into an absorbing

state. The infinite sum X ≜
∑

n≥0Q
n
satisfies X = I +QX , and solving for X yields

X = (I −Q)−1 and A = (I −Q)−1R. (2)

(We refer the reader to [27] or Lemma A.3 in Appendix A for the proof that the inverse must exist.)

Before we apply this theory to the small-step semantics SJ−K, it will be useful to introduce some

MC-specific notation. Let T be an MC. We write s
T
−→n s ′ if s can reach s ′ in precisely n steps, i.e. if

T n
s,s ′ > 0; and we write s

T
−→ s ′ if s can reach s ′ in any number of steps, i.e. if T n

s,s ′ > 0 for any n ≥ 0.

Two states are said to communicate, denoted s
T
←→ s ′, if s

T
−→ s ′ and s ′

T
−→ s . The relation

T
←→ is an

equivalence relation, and its equivalence classes are called communication classes. A communication

class is absorbing if it cannot reach any states outside the class. We sometimes write Pr[s
T
−→n s ′] to

denote the probability T n
s,s ′ . For the rest of the section, we fix a program p and abbreviate BJpK as

B and SJpK as S . We also define saturated states, those where the accumulator has stabilized.

Definition 5.4. A state (a,b) of S is saturated if the accumulator b has reached its final value, i.e.

if (a,b)
S
−→ (a′,b ′) implies b ′ = b.

Once we have reached a saturated state, the output of p∗ is fully determined. The probability of

ending up in a saturated state with accumulator b, starting from an initial state (a,∅), is

lim

n→∞

∑
a′

Sn(a,∅), (a′,b)

and indeed this is the probability that p∗ outputs b on input a by Proposition 5.2. Unfortunately,

we cannot directly compute this limit since saturated states are not necessarily absorbing. To see

this, consider the program p∗ = (f←0 ⊕1/2 f←1)∗ over a single {0, 1}-valued field f . Then S has

the form

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Anon.

0, 0 0, {0, 1}

0,∅

1, 0 1, {0, 1}

where all edges are implicitly labeled with
1

2
. At the nodes, 0 denotes the packet with f set to 0,

and 1 denotes the packet with f set to 1; we omit states not reachable from (0,∅). The right-most

states are saturated, but they communicate and are thus not absorbing.

To align saturated and absorbing states, we can perform a quotient of this Markov chain; roughly

speaking, we will collapse the two communicating states above. We define the auxiliary matrix

U ∈ S(2Pk × 2Pk) as

U(a,b), (a′,b′) ≜ 1[b ′ = b] ·

1[a′ = ∅] if (a,b) is saturated

1[a′ = a] else

It sends a saturated state (a,b) to the canonical saturated state (∅,b)—which is always absorbing—

and it acts as the identity on all other states. In our example, the modified chain SU looks as

follows:

0, 0 0, {0, 1}

0,∅ ∅, {0, 1}

1, 0 1, {0, 1}

Indeed, each state can reach an absorbing state and this Markov chain is absorbing as desired. To

show that SU is an absorbing MC in general, we first observe:

Lemma 5.5. S , U , and SU are monotone in the following sense: (a,b)
S
−→ (a′,b ′) implies b ⊆ b ′

(and similarly forU and SU).

Proof. The claim follows for S andU by definition, and for SU by composition. □

Now we can show that SU is indeed an absorbing MC.

Proposition 5.6. Let n ≥ 1.
(1) (SU)n = SnU
(2) SU is an absorbing MC with absorbing states {(∅,b) | b ⊆ Pk}.

Arranging the states (a,b) in lexicographically ascending order according to ⊆ and letting

n = |2Pk |, it then follows from Proposition 5.6.2 that SU has the form

SU =

[
In 0

R Q

]

where for a , ∅, we have

(SU)(a,b), (a′,b′) =
[
R Q

]
(a,b), (a′,b′)

Moreover, SU converges and its limit is given by

(SU)∞ ≜

[
In 0

(I −Q)−1R 0

]
= lim

n→∞
(SU)n . (3)

Putting together the pieces, we can use the modified Markov chain SU to compute the limit of S .

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Taking Probabilistic NetKAT to the Limit 15

if pt=1 then
pt←2 ⊕0.5 pt←3

else if pt=2 then
pt←1

else if pt=3 then
pt←1

else

drop pt←2 ⊕0.5 pt←3 pt←1 drop

pt=3

pt=2

pt=1

∅ pt=1 pt=2 pt=3 pt=∗

∅ 1

pt=1 1

2

1

2

pt=2 1

pt=3 1

pt=∗ 1

Program Probabilistic FDD Sparse matrix

Compile Convert
Solve

Fig. 5. Implementation using FDDs and a sparse linear algebra solver.

Theorem 5.7 (Closed Form). Let a,b,b ′ ⊆ Pk. Then

lim

n→∞

∑
a′

Sn(a,b), (a′,b′) = (SU)∞(a,b), (∅,b′) (4)

or, using matrix notation,

lim

n→∞

∑
a′

Sn(−,−), (a′,−) =

[
In

(I −Q)−1R

]
∈ [0, 1](2

Pk×2Pk)×2Pk . (5)

In particular, the limit in (4) exists and can be effectively computed in closed-form.

As an application, we can decide program equivalence.

Corollary 5.8. For programs p and q, it is decidable whether p ≡ q.

6 IMPLEMENTATION
We have implemented ProbNetKAT as an embedded DSL in OCaml in roughly 5000 lines of

code. The frontend provides functions for defining and manipulating ProbNetKAT programs, and

for translating network topologies encoded using GraphViz into ProbNetKAT. The backend is a

compiler that takes ProbNetKAT ASTs as input and generates stochastic matrices as output. The

resulting matrices can then be analyzed using standard linear algebra and other statistical tools.

6.1 Compilation
As the careful reader may have noticed, a direct implementation of the semantics presented in §4

and §5 would not scale as it involve constructing matrices over an intractably large state space—the

powerset 2
Pk

of the universe of possible packets! To obtain a practical analysis tool, we restrict the

state space to single packets and use symbolic data structures and several optimizations.

The compilation process, which is illustrated in Figure 5, proceeds as follows. First, we translate

atomic programs directly to Forwarding Decision Diagrams (FDDs), a symbolic data structure based

on Binary Decision Diagrams (BDDs) that encodes sparse matrices compactly. Second, we compile

composite programs by first translating the constituent programs to FDDs and then combining

those into a unified FDD using standard BDD traversal algorithms. Third, we compile loops by

(i) converting the FDD representing the body of the loop to a sparse matrix representation, (ii)

invoking an optimized sparse linear solver to solve the system from §5.1, and (iii) converting the

resulting matrix back into an FDD.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Anon.

6.1.1 Restriction to Singletons. Although our semantics was developed using packet sets, our

implementation sacrifices the ability to model multicast and works with singleton packets and the

empty set only. Syntactically, we remove the operators for union (&) and iteration (
∗
) from the

language and expose the more restrictive if-then-else and while-do primitives instead. This ensures

that no proper packet sets are ever generated, thus allowing us to work over an exponentially

smaller state space. In our experience, this is rarely a limitation in practice because multicast is

somewhat less common, and can be analyzed in terms of multiple unicast programs if necessary.

6.1.2 Probabilistic FDDs. Binary Decision Diagrams (BDDs) [1] and variants thereof [15] have

long been used in verification and model checking to represent large state spaces compactly. We

use a variant called Forwarding Decision Diagrams (FDDs) that was developed specifically for

the networking domain [44] and extend it with distributions to encode probabilistic (rather than

deterministic) packet-processing functions.

A probabilistic FDD is a rooted directed acyclic graph that can be understood as a control-flow

graph. Interior nodes test packet fields and have outgoing true- and false- branches (which we

visualize by solid lines and dashed lines, cf. Figure 5). Leaf nodes contain distributions over actions,
where an action is either a set of modifications or the drop primitive. To interpret an FDD, we

start at the root node with an initial packet and traverse the graph as dictated by the tests until

a leaf node is reached. Then, we apply each action in the leaf node to the packet. Thus, an FDD

represents a function of type Pk→ D (Pk +∅), or equivalently, a stochastic matrix over the state

space Pk +∅ (where the ∅-row puts all mass on ∅ by convention).

Like BDDs, FDDs respect a total order on tests and contain no isomorphic subgraphs and no

redundant tests, which allows them to represent sparse matrices compactly in practice.

6.1.3 Dynamic Domain Reduction. As Figure 5 shows, we do not have to represent the state

space Pk +∅ explicitly even when converting into sparse matrix form. In the example, the state

space is represented by symbolic packets pt = 1, pt = 2, pt = 3, and pt = ∗, each representing an

equivalence class of packets with the same behavior. For example, pt = 1 can represent all packets

π satisfying π .pt = 1, because the program treats all such packets in the same way. The packet

pt = ∗ represent the set {π | π .pt < {1, 2, 3}}. The symbol ∗ can be thought of as a wildcard that

ranges over all values not explicitly represented by other symbolic packets.

The symbolic packets used to encode the packet domain are chosen dynamically when converting

an FDD to a matrix by traversing the FDD and determining for each field which set of values

appears with it, either in a test or a modification. Since FDDs never contain redundant tests or

modifications, these sets are typically of manageable size.

6.2 Evaluation
We conducted several experiments to evaluate the scalability of our implementation and the effect

of optimizations, using a synthetic benchmark from the literature [17] and a real-world data center

with a sophisticated routing scheme. All experiments were performed on 16-core, 2.6 GHz Intel

Xeon E5-2650 machines with 64 GB of memory.

6.2.1 Comparison with Bayonet. Bayonet [17] is a state of the art tool for expressing and

reasoning about probabilistic networks. While ProbNetKAT is based on a custom backend tailored

to the domain, Bayonet programs are translated to a general-purpose probabilistic programming

language (PPL). To evaluate how these approaches compare in terms of performance, we reproduced

an experiment from the Bayonet paper [17] that analyzes the reliability of a simple routing scheme

in the presence of link failures.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Taking Probabilistic NetKAT to the Limit 17

H1 S0

S1

S2

S3 S4k

S4k+1

S4k+2

S4k+3 H2

pfail pfail

100 101 102 103 104

Number of switches

100

101

102

103

104

Ti
m

e
(s

ec
on

ds
)

OOM after
timing out

Timed out
after OOM

Time limit = 3600s

Bayonet
ProbNetKAT

(a) (b)

Fig. 6. Bayonet comparison: (a) topology and (b) scalability results.

The experiment considers hosts H1 and H2 connected by a family of topologies
2
indexed by k . For

k = 1, the network consists of a quartet of switches organized as a diamond with a single link that

fails with probability pfail = 1/1000. For k > 1, the network consists of k diamonds linked together

into a chain as shown in Figure 6(a). Within each diamond, switch S0 uses probabilistic routing,
forwarding packets with equal probability to switches S1 and S2, which in turn forward the packet

along to switch S3. However, S2 drops the packet if the link to S3 fails. We consider a packet that

originates at host H1 and analyze the probability that it gets delivered correctly to host H2.
Figure 6 compares the running times of both tools when queried for the probability of packet

delivery. Note that both axes are log-scaled. We see that Bayonet scales to 32 switches in about

25 minutes, before hitting the 1h time limit and 64 GB memory limit at 48 switches. ProbNetKAT

answers the same query for 256 switches in about 2 seconds and scales to over 6000 switches in

under 11 minutes, before running out of memory shortly thereafter.

Discussion. The experiment shows that ProbNetKAT’s domain-specific backend and specialized

data structures outperform an approach based on general-purpose tools by orders of magnitude. It

is important to also note the drawbacks of our approach however. Because Bayonet is based on

a general-purpose probabilistic programming language, it is more expressive than ProbNetKAT

and can model queues and stateful functionality. It also comes with build-in support for Bayesian

reasoning. Section 8 discusses the differences between the tools in detail.

6.2.2 Real-world Data Center. To evaluate how ProbNetKAT scales on more complex examples,

we modeled a sophisticated resilient routing scheme from the literature called F10 [33] on a

commonly used data center topology called FatTree [2] (see Figure 10). A FatTree is defined in

terms of a parameter k that controls the size of the network: a k-ary FatTree connects
1

4
k3 servers

using
5

4
k2 switches. The next section describes our model and the analyses we performed in great

detail; here we discuss the performance of our tool as we increase k , and the effect of optimizations.

Figures 7 and 8 report the running time of the analysis as a function of the number of switches,

using log-scaled and linearly-scaled time axes, respectively. The analysis is more expensive when

compared with the previous experiment, but still scales to a 10-ary FatTree with 125 switches in

about 5 seconds and to a 16-ary FatTree connecting 1024 machines using 320 switches in about 25

minutes. The increase in running time is due to a denser topology and a more sophisticated routing

scheme using extra fields, resulting in a larger state space.

2
Note that we do not exploit the regularity of these topologies to speed up analysis in our benchmark.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Anon.

0 50 100 150 200 250 300 350
Number of switches

10−3

10−2

10−1

100

101

102

103

Ti
m

e
(s

ec
on

ds
)

Bound: 1
Bound: inf

Fig. 7. Linear algebra is not the bottleneck.

0 50 100 150 200 250 300 350
Number of switches

0

500

1000

1500

2000

Ti
m

e
(s

ec
on

ds
)

OOMCPS: Disabled
CPS: Enabled

Fig. 8. Scalability gain with CPS-style compilation.

Bottlenecks. Our FatTree experiment uses a single top-level while loop that repeats routing steps

until the destination is reached, as explained in §2. To evaluate the cost of compiling iteration, we

replaced the loop with its body (Figure 7), modeling only a single hop. As the graph shows, the

speed gap between single-hop compilation vs. full compilation quickly closes for larger topologies,

meaning that the cost of computing the fixed point becomes negligible. We profit from the highly

optimized UMFPack routine that takes advantage of all 16 cores on our test machines. This suggests

that performance could be further improved by accelerating our FDD algorithms.

Indeed the bottleneck for this experiment lies in our representation of distributions, as it scales

exponentially in k for this particular model. The problem lies in a sequence

(up1←0 ⊕p up1←1) ; · · · ; (upk←0 ⊕p upk←1) ; p

of independent random assignment to k binary variables modeling which switch ports are up,

followed by a program p that breaks this independence, but maintains conditional independence.
Using FDDs, we must resort to a naive exponential encoding of the joint distribution. An interesting

question for future work is whether Bayesian networks could be employed to represent conditionally

independent distributions efficiently.

An important property of our tool is that virtually the entire analysis time is spent on compilation:

once we have synthesized an FDD, it can typically be queried in milliseconds using simple traversal

algorithms. Figures 8 and 7 thus report only the compilation time. This means that ProbNetKAT

performs favorably for multiple queries of the samemodel, as the compilation time can be amortized.

CPS-style translation. We observe empirically that a CPS-style compilation scheme can often

improve scalability dramatically (Figure 8). The idea is simple: instead of compiling programs

bottom-up, we compile them left-to-right. In this scheme, when we compile a subprogram p, we
already have an FDD t in hand that captures the result of the program from its beginning up to

p. Intuitively, this allows us to partially evaluate and thereby simplify p before converting to an

FDD. If t happens to be drop, we can avoid the compilation of p altogether as drop ; p ≡ drop. For
FatTrees, this reduces compilation time from 10 minutes to 25 seconds for 180 switches.

7 CASE STUDY: RESILIENT ROUTING
In this section, we go beyond benchmarks and illustrate the utility of our tool for solving a real-

world networking problem. Specifically, we develop an extended case study involving data center

topologies and resilient routing schemes. A recent measurement study showed that failures in

data centers [19] occur frequently, and have a major impact on application-level performance,

motivating a line of research exploring the design of fault-tolerant data center fabrics in which

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Taking Probabilistic NetKAT to the Limit 19

s1 s2 s3 s4 s5 s6 s7 s8

✗

Fig. 9. A FatTree topology with 20 switches.

s1 s2

A

s3 s4

A′

s5 s6

A′′

s7 s8

C

Edge

Aggregation

Core

✗

Fig. 10. An AB FatTree topology with 20 switches.

the topology and routing scheme are co-designed to simultaneously achieve high throughput, low

latency, and resilience to failures.

7.1 Topology and routing
Data center topologies typically organize the network fabric into multiple levels of switches.

FatTree. A FatTree [2] is perhaps the most common example of a multi-level, multi-rooted tree

topology. Figure 9 shows a 3-level FatTree topology with 20 switches. The bottom level, edge,
consists of top-of-rack (ToR) switches; each ToR switch connects all the hosts within a rack (not

shown in the figure). These switches act as ingress and egress for intra-data center traffic. The

other two levels, aggregation and core, redundantly connect the switches from the edge layer.

The redundant structure of a FatTree makes it possible to implement fault-tolerant routing

schemes that detect and automatically route around failed links. For instance, consider routing

from a source to a destination along shortest paths—e.g., the green links in the figure depict one

possible path from (s7) to (s1). On the way from the ToR to the core switch, there are multiple

paths that could be used to carry the traffic. Hence, if one of the links goes down, the switches can

route around the failure by simply choosing a different path. Equal-cost multi-path (ECMP) routing

is widely used—it automatically chooses among the available paths while avoiding longer paths

that might increase latency.

However, after reaching a core switch, there is a unique shortest path down to the destination.

Hence, ECMP no longer provides any resilience if a switch fails in the aggregation layer (cf. the red
cross in Figure 9). A more sophisticated scheme could take a longer (5-hop) detour going all the

way to another edge switch, as shown by the red lines in the figure. Unfortunately, such detours

can lead to increased latency and congestion.

AB FatTree. The long detours on the downward paths in FatTrees are dictated by the symmetric

wiring of aggregation and core switches. AB FatTrees [33] alleviate this by using two types of

subtrees, differing in their wiring to higher levels. Figure 10 shows how to rewire a FatTree to make

it an AB FatTree. The two types of subtrees are as follows:

i) Type A: switches depicted in blue and wired to core using dashed lines.

ii) Type B: switches depicted in red and wired to core using solid lines.

Type A subtrees are wired in a way similar to FatTree, but Type B subtrees differ in their connections

to core switches. In our diagrams, each aggregation switch in a Type A subtree is wired to adjacent

core switches, while each aggregation switch in a Type B subtree is wired to core switches in a

staggered manner. (See the original paper for the general construction [33].)

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Anon.

// F10 without rerouting
f10_0 :=
 // ECMP, but don’t use inport
 fwd_on_random_shortest_path

// F10 with 3-hop rerouting
f10_3 :=
 f10_0;
 if at_down_port then 3hop_rr

// F10 with 3-hop & 5-hop rerouting
f10_3_5 :=
 if at_ingress then (default <- 1);
 if default = 1 then (
 f10_3;
 if at_down_port then (5hop_rr; default <- 0)
) else (
 default <- 1; // back to default forwarding
 fwd_downward_uniformly_at_random
)

Fig. 11. ProbNetKAT implementation of F10 in three refinement steps.

This slight change in wiring enables much shorter detours around failures in the downward

direction. Consider again routing from source (s7) to destination (s1). As before, we have multiple

options going upwards when following shortest paths (e.g., the one depicted in green), as well as a

unique downward path. But unlike FatTree, if the aggregation switch on the downward path fails,

there is a short detour, as shown in blue. This path exists because the core switch, which needs

to reroute traffic, is connected to aggregation switches of both types of subtrees. More generally,

aggregation switches of the same type as the failed switch provide a 5-hop detour; but aggregation

switches of the opposite type provide an efficient 3-hop detour.

7.2 ProbNetKAT implementation
We encode routing schemes for FatTrees in ProbNetKAT and analyze their behavior under several

different failure models.

Routing. F10 [33] provides a routing algorithm that combines the three (re)routing strategies we

just discussed (ECMP, 3-hop rerouting, 5-hop rerouting) into a single scheme. We implemented

it in three steps, as shown in the psueocode in Figure 11. The first scheme, F100, implements an

ECMP-like approach:
3
it randomly selects a port along one of the shortest paths to the destination.

4

Next, we improve the resilience of F100 by augmenting it with 3-hop rerouting if the next hop

switch A along the downward shortest path from a core switch C fails. To illustrate, consider the

blue path in Figure 10. We find a port on C that connects to an aggregation switch A′ with the

opposite type of the failed aggregation switch,A, and forward the packet toA′. If there are multiple

such ports which have not failed, we choose one uniformly at random. Default routing continues

at A′, and ECMP will know not to send the packet back to C . F103 implements this refinement.

Note that if F103 is still unable to find a port on C whose adjacent link is up, then all links

connecting to switches of the opposite type must have failed. In this case, we attempt 5-hop

rerouting via an aggregation switch A′′ of the same type as A. To illustrate, consider the red path

in Figure 10. We begin by forwarding the packet to A′′. To let A′′ know that it should not send

the packet back to core layer, we unset a flag default to indicate that A′′ should send the packet

further downward. Default routing continues after A′′. F103,5 implements this final refinement.

Network and Failure Models. Our network model works much like the one from §2. However, to

simplify the model, we analyze forwarding to a single ToR switch (s1) and elide the final hop to the

host connected to this switch.

M(p, t) ≜ in ; do (p ; t) while (¬sw=1)

3
ECMP implementations are usually based on hashing, which approximates random forwarding provided there is sufficient

entropy in the header fields used to select an outgoing port.

4
We exclude the ingress port from this set to eliminate possible forwarding loops when routing around failures.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Taking Probabilistic NetKAT to the Limit 21

k M̂(F100, t, fk)
≡ teleport

M̂(F103, t, fk)
≡ teleport

M̂(F103,5, t, fk)
≡ teleport

0 ✓ ✓ ✓
1 ✗ ✓ ✓
2 ✗ ✓ ✓
3 ✗ ✗ ✓
4 ✗ ✗ ✗
∞ ✗ ✗ ✗

Table 1. Evaluating k-resilience of F10.

k
compare

(F100, F103)
compare

(F103, F103,5)
compare

(F103,5, teleport)

0 ≡ ≡ ≡

1 < ≡ ≡

2 < ≡ ≡

3 < < ≡

4 < < <
∞ < < <

Table 2. Comparing schemes under k failures.

The ingress predicate in is a disjunction of switch-and-port tests over all ingress locations. This first

model is embedded into a refined model M̂(p, t , f) that integrates the failure model and declares all

necessary local variables that track the health of individual ports:

M̂(p, t , f) ≜ var up1←1 in . . . var upd←1 in (M((f ; p), t))

Here d denotes the maximum degree of all nodes in the FatTree and AB FatTree topologies from

Figures 9 and 10, which we encode as programs fattree and abfattree much like in §2.

We define a family of failure models f
pr
k , where k ∈ N ∪ {∞} bounds the maximum number

of failures that may occur, and links fail otherwise independently with probability pr . We omit

pr when clear from context. To focus on the scenarios occurring on downward paths, we model

failures only for links connecting the aggregation and core layer.

7.3 Checking Invariants
We can gain confidence in our implementation of F10 by verifying that it maintains certain key

invariants. As an example, recall our implementation of F103,5: when we perform 5-hop rerouting,

we use an extra bit (default) to notify the next hop aggregation switch to forward the packet

downwards instead of performing default forwarding. The next hop follows this instruction and

also resets default back to 1. By design, a packet should never be delivered to the destination with

default set to 0. To verify this property, we check the following equivalence:

∀t ,k : M̂(F103,5, t, fk) ≡ M̂(F103,5, t, fk) ; default=1

We executed the check using our implementation for k ∈ {0, 1, 2, 3, 4,∞} and t ∈ {fattree, abfattree}.
As discussed below, we actually failed to implement this feature correctly on our first attempt due

to a subtle bug—we neglected to initialize the default bit to 1 at the ingress (cf. Figure 11, right
column, line 3). We discovered this bug using our implementation.

7.4 F10 routing with FatTree
We previously saw that the structure of FatTree doesn’t allow 3-hop rerouting on failures because

all subtrees are of the same type. This would mean that augmenting ECMP with 3-hop rerouting

should not improve resilience. To verify this, we can check the following equivalence:

∀k : M̂(F100, fattree, fk) ≡ M̂(F103, fattree, fk)

Wehave used our implementation to check that this equivalence indeed holds fork ∈ {0, 1, 2, 3, 4,∞}.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Anon.

7.5 Refinement
Recall that we implemented F10 in three stages: (i) we started with a basic routing scheme F100

based on ECMP that provides resilience on the upward path but no rerouting capabilities on the

downward path, (ii) we augmented this scheme by adding 3-hop rerouting to obtain F103 which

can route around certain failures in the aggregation layer, and (ii) we finally added 5-hop rerouting

to address failure cases that 3-hop rerouting cannot handle, obtaining F103,5. Hence, we would

expect the probability of packet delivery to increase with each refinement of our routing scheme.

Additionally, we expect all schemes to deliver packets and drop packets with some probability

under the unbounded failure model. Summarizing:

drop < M̂(F100, t , f∞) < M̂(F103, t , f∞) < M̂(F103,5, t , f∞) < teleport

where t = abfattree and teleport ≜ sw←1. To our surprise, we were not able to verify this property

initially, as our implementation indicated that the ordering M̂(F103, t , f∞) < M̂(F103,5, t , f∞) was
violated. We found that F103 performed better than F103,5 for packets π with π .default = 0. This

was due to a bug: we were missing the first line in our implementation of F103,5 (cf., Figure 11) that
initializes the default bit to 1 at the ingress, causing packets to be dropped. After fixing the bug, we
were able to confirm the expected ordering.

7.6 k-resilience
We saw that there exists a strict ordering in terms of resilience for F100, F103 and F103,5 when

an unbounded number of failures can happen. Another interesting way of quantifying resilience

is to count the minimum number of failures at which a scheme fails to guarantee 100% delivery.

Using ProbNetKAT, we can compute this metric by increasing the k parameter in fk and checking

equivalence with teleportation. Table 1 shows the results based on our decision procedure for the

AB FatTree topology from Figure 10.

The naive scheme, F100, which does not perform any rerouting, drops packets when a failure

occurs on the downward path. Thus, it is 0-resilient. In the example topology, 3-hop rerouting

has two possible ways to reroute for the given failure. Even if only one of the Type B subtrees is

reachable, F103 can still forward traffic. However, if both Type B subtrees are unreachable, then

F103 will not be able to reroute traffic. Thus, F103 is 2-resilient. Similarly, F103,5 can route as long as

any aggregation switch is reachable from the core switch. For F103,5 to fail the core switch would

need to be disconnected from all four aggregation switches. Hence it is 3-resilient. In cases where

schemes are not equivalent to teleport, we can characterize the relative robustness by computing

the ordering, as shown in Table 2.

7.7 Resilience under increasing failure rate
We can also do more quantitative analyses, such as evaluating the effect of link failure on the packet

delivery probability. Figure 12(a) shows this analysis in a failure model in which an unbounded

number of failures can occur simultaneously. We find that F100’s delivery probability dips signifi-

cantly as the failure probability increases because F100 is not resilient to failures. In contrast, both

F103 and F103,5 continue to ensure high probability of delivery by rerouting around failures.

7.8 Cost of resilience
By augmenting naive routing schemes with rerouting mechanisms, we achieve a higher degree of

resilience. But this benefit comes at a cost: taking detours increases latency (i.e., hop count). We can

quantify this increase in latency by augmenting our model with a counter that is incremented at

each hop. Figure 12(b) shows the CDF of latency as the fraction of traffic delivered within a given

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Taking Probabilistic NetKAT to the Limit 23

1/1281/64 1/32 1/16 1/8 1/4
Link failure probability

0.80

0.85

0.90

0.95

1.00

Pr
[d

el
iv

er
y]

AB FatTree, F100
AB FatTree, F103
AB FatTree, F103, 5
FatTree, F103, 5

2 4 6 8 10 12 14
Hop count

0.6

0.7

0.8

0.9

1.0

Pr
[h

op
 c

ou
nt

 ≤
x]

AB FatTree, F100
AB FatTree, F103
AB FatTree, F103, 5
FatTree, F103, 5

1/128 1/64 1/32 1/16 1/8 1/4
Link failure probability

3.6

3.8

4.0

4.2

4.4

4.6

4.8

E[
ho

p
co

un
t |

 d
el

iv
er

ed
] AB FatTree, F100

AB FatTree, F103
AB FatTree, F103, 5
FatTree, F103, 5

(a) (b) (c)

Fig. 12. Case study results (k = ∞): (a) Probability of delivery vs. link-failure probability; (b) Increased latency
due to resilience (pr = 1

4
); (c) Expected hop-count conditioned on delivery.

hop count. On AB FatTree, F100 delivers ≈80% of the traffic in ≤ 4 hops, as the maximum length of

a shortest path from any edge switch to s1 is 4 and F100 does not attempt to recover from failures.

F103 and F103,5 deliver the same amount of traffic with hop count ≤ 4, but with 2 additional hops,

they deliver significantly more traffic by using 3-hop paths to route around failures. With additional

hops, the throughput of F103,5 increases further using 5-hop paths. F103 also delivers more traffic

with 8 hops—these are the cases when F103 performs 3-hop rerouting twice for a single packet as it

encountered failure twice. Similarly, we see small throughput increases for higher hop counts. On

FatTree, F103,5 improves resilience, but the impact on latency is significantly higher as the topology

does not support 3-hop rerouting.

7.9 Expected latency
Figure 12(c) shows the expected hop-count of paths taken by packets conditioned on their delivery.

Both F103 and F103,5 deliver packets with high probability even at high failure probabilities, as we

saw in Figure 12(a). However, a higher probability of link-failure implies that it becomes more

likely for these schemes to invoke rerouting, which increases hop count. Hence, we see the increase

in expected hop-count as failure probability increases. F103,5 uses 5-hop rerouting to achieve more

resilience compared to F103, which performs only 3-hop rerouting, and this leads to slightly higher

expected hop-count for F103,5. The increase is more significant for FatTree in contrast to AB FatTree,

because FatTree only supports 5-hop rerouting.

As the failure probability increases, the probability of delivery for packets that are routed via the

core layer decreases significantly for F100 (recall Figure 12(a)). Thus, the distribution of delivered

packets shifts towards those with direct 2-hop path via an aggregation switch (such as packets

from s2 to s1), and hence the expected hop-count decreases slightly.

7.10 Discussion
As this case study shows, the stochastic matrix representation of ProbNetKAT programs and

accompanying decision procedure enable us to answer awide variety of questions about probabilistic

networks completely automatically. Moreover, our tool is able to handle real-world topologies and

routing schemes. These capabilities represent a significant advance over current network verification

tools, which are largely based on deterministic packet-forwarding models [14, 26, 28, 34].

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Anon.

8 RELATEDWORK
The most closely related system to ProbNetKAT is Bayonet [17]. In contrast to the domain-specific

approach developed in this paper, Bayonet is based on a general-purpose probabilistic programming

language and inference tool [18]. Such an approach, which reuses existing abstractions, is naturally

appealing. In addition, Bayonet is more expressive than ProbNetKAT: it supports asynchronous

packet scheduling, stateful transformations, and probabilistic inference, making it possible to

accurately model richer phenomena, such as congestion due to packet-level interactions in queues.

However, the extra generality comes at a cost. Bayonet currently requires programmers to supply

an upper bound on loops as the implementation is not guaranteed to find a fixpoint. As discussed

in §6, ProbNetKAT scales two orders of magnitude better than Bayonet on its own benchmark

program. Finally, it is not clear how one could ensure that Bayonet faithfully models the fine-grained

queuing behavior of real-world switches: writing the scheduler could be challenging, and one might

also need to model host-level congestion control protocols. Current Bayonet programs use simple

deterministic or uniform schedulers and model only a handful of packets at a time [16].

A key ingredient that underpins the results in this paper is the idea of representing the semantics

of iteration using absorbing Markov chains, and exploiting their properties to directly compute

limiting distributions on them. Of course, Markov chains have been used to represent and to

analyze probabilistic programs in previous work. An early example of using Markov chains for

modeling probabilistic programs is the seminal paper by Sharir, Pnueli, and Hart [42]. They present

a general method for proving properties of probabilistic programs. In their work, a probabilistic

program is modeled by a Markov chain and an assertion on the output distribution is extended to

an invariant assertion on all intermediate distributions (providing a probabilistic generalization of

Floyd’s inductive assertion method). Their approach can assign semantics to infinite Markov chains

for infinite processes, using stationary distributions of absorbing Markov chains in a similar way

to the one used in this paper. Note however that the state space used in this and other work is not

like ProbNetKAT’s current and accumulator sets (2
Pk × 2Pk), but is instead is the Cartesian product

of variable assignments and program location. In this sense, the absorbing states occur for program

termination, rather than for accumulation as in ProbNetKAT. Although packet modification is

clearly related to variable assignment, accumulation does not clearly relate to program location.

Readers familiar with prior work on probabilistic automata might wonder if we could directly

apply known results on (un)decidability of probabilistic rational languages. This is not the case—

probabilistic automata accept distributions over words, while ProbNetKAT programs encode dis-

tributions over languages. Similarly, probabilistic programming languages, which have gained

popularity in the last decade motivated by applications in machine learning, focus largely on

Bayesian inference. They typically come equipped with a primitive for probabilistic conditioning

and often have a semantics based on sampling. Working with ProbNetKAT has a substantially

different style, in that the focus is on on specification and verification rather than inference.

Di Pierro, Hankin, and Wiklicky have used probabilistic abstract interpretation to statically

analyze probabilistic λ-calculus [10]. Their work was later extended to a language called pWhile ,
using a store plus program location state-space similar to [42].pWhile is a basic imperative language

augmented with random choice between program blocks with a rational probability, and limited to

a finite of number of finitely-ranged variables (in our case, packet fields). In contrast to our work,

they do not deal with infinite limiting behavior beyond stepwise iteration, and do not guarantee

convergence. Probabilistic abstract interpretation is a new but growing field of research [47].

Olejnik, Wicklicky, and Cheraghchi provided a probabilistic compiler pwc for a variation of

pWhile [37], implemented in OCaml, together with a testing framework. The pwc compiler has

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Taking Probabilistic NetKAT to the Limit 25

optimizations involving, for instance, the Kronecker product to help control matrix size, and a Julia

backend. These optimizations could be applied to the generation of SJpK from BJpK.
There is also significant prior work on finding explicit distributions in the context of probabilistic

programming languages, see e.g. a survey on the state of the art on probabilistic inference [22].

They show how stationary distributions on Markov chains can be used for the semantics of infinite

probabilistic processes, and how they converge under certain conditions. Similar to our approach,

they use absorbing strongly-connected-components to represent termination.

Markov chains are used in many probabilistic model checkers, of which PRISM [32] is a prime

example. PRISM supports analysis of discrete-time Markov chains, continuous-time Markov chains,

and Markov decision processes. The models are checked against temporal logic specifications like

PCTL and CSL. PRISM provides three model checking engines: a symbolic one with (multi-terminal)

binary decision diagrams, a sparse matrix one, and a hybrid approach. The use of PRISM to analyse

ProbNetKAT programs is an interesting research avenue and we intend to explore it in the future.

9 CONCLUSION
This paper describes how to compute the semantics of history-free ProbNetKAT programs in closed

form, enabling automated analysis of probabilistic properties for ProbNetKAT programs. The key

technical challenge is overcome by modeling the iteration operator as an absorbing Markov chain,

which makes it possible to compute a closed-form solution for its semantics. Natural directions for

future work include investigating full ProbNetKAT (Appendix B describes some challenges) and

further optimizing the implementation, in particular by using Bayesian networks to represent joint

distributions compactly. Moreover, we believe that exploring additional applications of probabilistic

programing and reasoning is likely to be promising as networks increasingly incorporate various

forms of randomization [31, 43]. For example, one could imagine using ProbNetKAT to verify

that a multi-path routing scheme effectively spreads traffic over all available paths—in particular,

detecting load imbalance, which can arise with hash-based schemes such as ECMP [11]. In the same

vein, it would be interesting to analyze the sensitivity of a routing scheme to small changes in input

traffic. Another potential application is to verify the anonymity provided by “onion routing” in ToR.

Here we might analyze the distribution of packets seen at relay nodes and show that an adversary is

unable to use traffic analysis to infer the sender and receiver. Studying network neutrality in terms

of notions of uniformity and conditional independence would also be interesting. For example,

an ISP might be allowed to discriminate based on source and destination addresses, but not other

header fields such as TCP ports [50]. Finally, it would be interesting to analyze the accuracy of

network monitoring schemes based on sampling—in particular, the interplay between routing,

monitoring, and sampling rate [41].

REFERENCES
[1] S. B. Akers. 1978. Binary Decision Diagrams. IEEE Trans. Comput. 27, 6 (June 1978), 509–516. https://doi.org/10.1109/

TC.1978.1675141

[2] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A Scalable, Commodity Data Center Network

Architecture. In ACM SIGCOMM Computer Communication Review, Vol. 38. ACM, 63–74.

[3] Rajeev Alur, Dana Fisman, and Mukund Raghothaman. 2016. Regular programming for quantitative properties of data

streams. In ESOP 2016. 15–40.
[4] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen, Cole Schlesinger, and David

Walker. 2014. NetKAT: Semantic Foundations for Networks. In POPL. 113–126.
[5] Manav Bhatia, Mach Chen, Sami Boutros, Marc Binderberger, and Jeffrey Haas. 2014. Bidirectional Forwarding

Detection (BFD) on Link Aggregation Group (LAG) Interfaces. RFC 7130. (Feb. 2014). https://doi.org/10.17487/RFC7130

[6] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford, Cole Schlesinger, Dan Talayco,

Amin Vahdat, George Varghese, and David Walker. 2014. P4: Programming Protocol-Independent Packet Processors.

SIGCOMM CCR 44, 3 (July 2014), 87–95.

https://doi.org/10.1109/TC.1978.1675141
https://doi.org/10.1109/TC.1978.1675141
https://doi.org/10.17487/RFC7130

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 Anon.

[7] Martin Casado, Nate Foster, and Arjun Guha. 2014. Abstractions for Software-Defined Networks. CACM 57, 10 (Oct.

2014), 86–95.

[8] Timothy A. Davis. 2004. Algorithm 832: UMFPACK V4.3—an Unsymmetric-pattern Multifrontal Method. ACM Trans.
Math. Softw. 30, 2 (June 2004), 196–199. https://doi.org/10.1145/992200.992206

[9] Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk. 2017. A storm is Coming: A Modern

Probabilistic Model Checker (LNCS), Vol. abs/1702.04311. arXiv:1702.04311 http://arxiv.org/abs/1702.04311

[10] Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky. 2005. Probabilistic λ-calculus and quantitative program

analysis. Journal of Logic and Computation 15, 2 (2005), 159–179. https://doi.org/10.1093/logcom/exi008

[11] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella. 2013. On the impact of packet spraying in data center networks. In

IEEE INFOCOM. 2130–2138.

[12] Manfred Droste, Werner Kuich, and Heiko Vogler. 2009. Handbook of Weighted Automata. Springer.
[13] Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark Reitblatt, and Alexandra Silva. 2016. Probabilistic NetKAT.

In ESOP. 282–309. https://doi.org/10.1007/978-3-662-49498-1_12

[14] Nate Foster, Dexter Kozen, Matthew Milano, Alexandra Silva, and Laure Thompson. 2015. A Coalgebraic Decision

Procedure for NetKAT. In POPL. ACM, 343–355.

[15] M. Fujita, P. C. McGeer, and J. C.-Y. Yang. 1997. Multi-Terminal Binary Decision Diagrams: An Efficient DataStructure for

Matrix Representation. Form. Methods Syst. Des. 10, 2-3 (April 1997), 149–169. https://doi.org/10.1023/A:1008647823331

[16] Timon Gehr, Sasa Misailovic, Petar Tsankov, Laurent Vanbever, Pascal Wiesmann, and Martin T. Vechev. 2018. Bayonet:

Probabilistic Computer Network Analysis. (June 2018). Available at https://github.com/eth-sri/bayonet/.

[17] Timon Gehr, Sasa Misailovic, Petar Tsankov, Laurent Vanbever, Pascal Wiesmann, and Martin T. Vechev. 2018. Bayonet:

probabilistic inference for networks. In ACM SIGPLAN PLDI. 586–602.
[18] Timon Gehr, Sasa Misailovic, and Martin T. Vechev. 2016. PSI: Exact Symbolic Inference for Probabilistic Programs.

62–83.

[19] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. 2011. Understanding Network Failures in Data Centers:

Measurement, Analysis, and Implications. In ACM SIGCOMM. 350–361.

[20] Hugo Gimbert and Youssouf Oualhadj. 2010. Probabilistic Automata on Finite Words: Decidable and Undecidable

Problems. In Automata, Languages and Programming, 37th International Colloquium, ICALP 2010, Bordeaux, France,
July 6-10, 2010, Proceedings, Part II. 527–538. https://doi.org/10.1007/978-3-642-14162-1_44

[21] Michele Giry. 1982. A categorical approach to probability theory. In Categorical aspects of topology and analysis.
Springer, 68–85. https://doi.org/10.1007/BFb0092872

[22] Andrew D Gordon, Thomas A Henzinger, Aditya V Nori, and Sriram K Rajamani. 2014. Probabilistic programming. In

Proceedings of the on Future of Software Engineering. ACM, 167–181. https://doi.org/10.1145/2593882.2593900

[23] Timothy V Griffiths. 1968. The unsolvability of the equivalence problem for Λ-free nondeterministic generalized

machines. Journal of the ACM 15, 3 (1968), 409–413.

[24] Tero Harju and Juhani Karhumäki. 1991. The equivalence problem of multitape finite automata. Theoretical Computer
Science 78, 2 (1991), 347–355.

[25] David M. Kahn. 2017. Undecidable Problems for Probabilistic Network Programming. In MFCS 2017. http://hdl.handle.

net/1813/51765

[26] Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header Space Analysis: Static Checking for Networks.

In USENIX NSDI 2012. 113–126. https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/kazemian

[27] John G Kemeny, James Laurie Snell, et al. 1960. Finite markov chains. Vol. 356. van Nostrand Princeton, NJ.

[28] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and Brighten Godfrey. 2012. Veriflow: Verifying Network-Wide

Invariants in Real Time. In ACM SIGCOMM. 467–472.

[29] Dexter Kozen. 1981. Semantics of probabilistic programs. J. Comput. Syst. Sci. 22, 3 (1981), 328–350. https://doi.org/10.

1016/0022-0000(81)90036-2

[30] Dexter Kozen. 1997. Kleene algebra with tests. ACM Transactions on Programming Languages and Systems (TOPLAS)
19, 3 (May 1997), 427–443. https://doi.org/10.1145/256167.256195

[31] Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster, Robert Kleinberg, Petr Lapukhov, Chiun Lin Lim, and Robert Soulé.

2018. Semi-Oblivious Traffic Engineering: The Road Not Taken. In USENIX NSDI.
[32] M. Kwiatkowska, G. Norman, and D. Parker. 2011. PRISM 4.0: Verification of Probabilistic Real-time Systems. In Proc.

23rd International Conference on Computer Aided Verification (CAV’11) (LNCS), G. Gopalakrishnan and S. Qadeer (Eds.),

Vol. 6806. Springer, 585–591. https://doi.org/10.1007/978-3-642-22110-1_47

[33] Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, and Thomas E Anderson. 2013. F10: A Fault-Tolerant Engineered

Network. In USENIX NSDI. 399–412.
[34] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P. Brighten Godfrey, and Samuel Talmadge King.

2011. Debugging the Data Plane with Anteater. In ACM SIGCOMM. 290–301.

https://doi.org/10.1145/992200.992206
http://arxiv.org/abs/1702.04311
http://arxiv.org/abs/1702.04311
https://doi.org/10.1093/logcom/exi008
https://doi.org/10.1007/978-3-662-49498-1_12
https://doi.org/10.1023/A:1008647823331
https://github.com/eth-sri/bayonet/
https://doi.org/10.1007/978-3-642-14162-1_44
https://doi.org/10.1007/BFb0092872
https://doi.org/10.1145/2593882.2593900
http://hdl.handle.net/1813/51765
http://hdl.handle.net/1813/51765
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/kazemian
https://doi.org/10.1016/0022-0000(81)90036-2
https://doi.org/10.1016/0022-0000(81)90036-2
https://doi.org/10.1145/256167.256195
https://doi.org/10.1007/978-3-642-22110-1_47

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Taking Probabilistic NetKAT to the Limit 27

[35] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker,

and Jonathan Turner. 2008. OpenFlow: Enabling Innovation in Campus Networks. SIGCOMM CCR 38, 2 (2008), 69–74.

[36] Mehryar Mohri. 2000. Generic ε -removal algorithm for weighted automata. In CIAA 2000. Springer, 230–242.
[37] Maciej Olejnik, Herbert Wiklicky, and Mahdi Cheraghchi. 2016. Probabilistic Programming and Discrete Time

Markov Chains. (2016). http://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/

MaciejOlejnik.pdf

[38] Michael O Rabin and Dana Scott. 1959. Finite automata and their decision problems. IBM Journal of Research and
Development 3, 2 (1959), 114–125.

[39] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren. 2015. Inside the Social Network’s

(Datacenter) Network. In ACM SIGCOMM. 123–137.

[40] N. Saheb-Djahromi. 1980. CPOs of measures for nondeterminism. Theoretical Computer Science 12 (1980), 19–37.

https://doi.org/10.1016/0304-3975(80)90003-1

[41] Vyas Sekar, Michael K. Reiter, Walter Willinger, Hui Zhang, Ramana Rao Kompella, and David G. Andersen. 2008.

CSAMP: A System for Network-wide Flow Monitoring. In USENIX NSDI. 233–246.
[42] Micha Sharir, Amir Pnueli, and Sergiu Hart. 1984. Verification of probabilistic programs. SIAM J. Comput. 13, 2 (1984),

292–314. https://doi.org/10.1137/0213021

[43] Rachee Singh, Manya Ghobadi, Klaus-Tycho Foerster, Mark Filer, and Phillipa Gill. 2018. RADWAN: Rate Adaptive

Wide Area Network. In ACM SIGCOMM.

[44] Steffen Smolka, Spiros Eliopoulos, Nate Foster, and Arjun Guha. 2015. A Fast Compiler for NetKAT. In ICFP 2015.
https://doi.org/10.1145/2784731.2784761

[45] Steffen Smolka, Praveen Kumar, Nate Foster, Dexter Kozen, and Alexandra Silva. 2017. Cantor Meets Scott: Semantic

Foundations for Probabilistic Networks. In POPL 2017. https://doi.org/10.1145/3009837.3009843

[46] L. Valiant. 1982. A Scheme for Fast Parallel Communication. SIAM J. Comput. 11, 2 (1982), 350–361.
[47] Di Wang, Jan Hoffmann, and Thomas Reps. 2018. PMAF: An Algebraic Framework for Static Analysis of Probabilistic

Programs. In POPL 2018. https://www.cs.cmu.edu/~janh/papers/WangHR17.pdf

[48] James Worrell. 2013. Revisiting the equivalence problem for finite multitape automata. In International Colloquium on
Automata, Languages, and Programming (ICALP). Springer, 422–433.

[49] Geoffrey G. Xie, Jibin Zhan, David A. Maltz, Hui Zhang, Albert G. Greenberg, Gísli Hjálmtýsson, and Jennifer Rexford.

2005. On static reachability analysis of IP networks. In INFOCOM.

[50] Zhiyong Zhang, Ovidiu Mara, and Katerina Argyraki. 2014. Network Neutrality Inference. In ACM SIGCOMM. 63–74.

http://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/MaciejOlejnik.pdf
http://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/MaciejOlejnik.pdf
https://doi.org/10.1016/0304-3975(80)90003-1
https://doi.org/10.1137/0213021
https://doi.org/10.1145/2784731.2784761
https://doi.org/10.1145/3009837.3009843
https://www.cs.cmu.edu/~janh/papers/WangHR17.pdf

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

28 Anon.

A OMITTED PROOFS
Lemma A.1. Let A be a finite boolean combination of basic open sets, i.e. sets of the form Ba = {a} ↑

for a ∈ ℘ω (H), and let L−M denote the semantics from [45]. Then for all programs p and inputs a ∈ 2H,

Lp∗M(a) (A) = lim

n→∞
Lp (n)M(a) (A)

Proof. Using topological arguments, the claim follows directly from previous results: A is a

Cantor-clopen set by [45] (i.e., both A and A are Cantor-open), so its indicator function 1A is

Cantor-continuous. But µn ≜ Lp (n)M(a) converges weakly to µ ≜ Lp∗M(a) in the Cantor topology

(Theorem 4 in [13]), so

lim

n→∞
Lp (n)M(a) (A) = lim

n→∞

∫
1Adµn =

∫
1Adµ = Lp∗M(a) (A)

(To see why A and A are open in the Cantor topology, note that they can be written in disjunctive

normal form over atoms B {h } .) □

Predicates in ProbNetKAT form a Boolean algebra.

Lemma A.2. Every predicate t satisfies JtK(a) = δa∩bt for a certain packet set bt ⊆ Pk, where

• bdrop = ∅,
• bskip = Pk,
• bf =n = {π ∈ Pk | π . f = n},
• b¬t = Pk − bt ,
• bt&u = bt ∪ bu , and
• bt ;u = bt ∩ bu .

Proof. For drop, skip, and f =n, the claim holds trivially. For ¬t , t & u, and t ; u, the claim follows

inductively, using thatD (f) (δb) = δf (b) , δb × δc = δ (b,c) , and that f
† (δb) = f (b). The first and last

equations hold because ⟨D,δ ,−†⟩ is a monad. □

Proof of Proposition 3.1. We only need to show that for dup-free programs p and history-free

inputs a ∈ 2Pk, LpM(a) is a distribution on packets (where we identify packets and singleton histories).
We proceed by structural induction on p. All cases are straightforward except perhaps the case of

p∗. For this case, by the induction hypothesis, all Jp (n)K(a) are discrete probability distributions on

packet sets, therefore vanish outside 2
Pk
. By Lemma A.1, this is also true of the limit Jp∗K(a), as its

value on 2
Pk

must be 1, therefore it is also a discrete distribution on packet sets. □

Proof of Lemma 3.2. This follows directly from Lemma A.1 and Proposition 3.1 by noticing that

any set A ⊆ 2
Pk

is a finite boolean combination of basic open sets. □

Proof of Theorem 4.1. It suffices to show the equalityBJpKab = JpK(a) ({b}); the remaining claims

then follow by well-definedness of J−K. The equality is shown using Lemma 3.2 and a routine

induction on p:

For p = drop, skip, f =n, f←n we have

JpK(a) ({b}) = δc ({b}) = 1[b = c] = BJpKab

for c = ∅,a, {π ∈ a | π . f = n}, {π [f := n] | π ∈ a}, respectively.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Taking Probabilistic NetKAT to the Limit 29

For ¬t we have,

BJ¬tKab = 1[b ⊆ a] · BJtKa,a−b
= 1[b ⊆ a] · JtK(a) ({a − b}) (IH)

= 1[b ⊆ a] · 1[a − b = a ∩ bt] (Lemma A.2)

= 1[b ⊆ a] · 1[a − b = a − (H − bt)]
= 1[b = a ∩ (H − bt)]
= J¬tK(a) (b) (Lemma A.2)

For p & q, letting µ = JpK(a) and ν = JqK(a) we have

Jp & qK(a) ({b}) = (µ × ν) ({(b1,b2) | b1 ∪ b2 = b})
=
∑
b1,b2 1[b1 ∪ b2 = b] · (µ × ν) ({(b1,b2)})

=
∑
b1,b2 1[b1 ∪ b2 = b] · µ ({b1}) · ν ({b2})

=
∑
b1,b2 1[b1 ∪ b2 = b] · BJpKab1 · BJqKab2 (IH)

= BJp & qKab

where we use in the second step that b ⊆ Pk is finite, thus {(b1,b2) | b1 ∪ b2 = b} is finite.

For p ; q, let µ = JpK(a) and νc = JqK(c) and recall that µ is a discrete distribution on 2
Pk
. Thus

Jp ; qK(a) ({b}) =
∑
c ∈2Pk νc ({b}) · µ ({c})

=
∑
c ∈2Pk BJqKc,b · BJpKa,c

= BJp ; qKab .

For p ⊕r q, the claim follows directly from the induction hypotheses.

Finally, for p∗, we know that BJp (n)Kab = Jp (n)K(a) ({b}) by induction hypothesis. The key to

proving the claim is Lemma 3.2, which allows us to take the limit on both sides and deduce

BJp∗Kab = lim

n→∞
BJp (n)Kab = lim

n→∞
Jp (n)K(a) ({b}) = Jp∗K(a) ({b}). □

Proof of Lemma 5.1. For arbitrary a,b ⊆ Pk, we have∑
a′,b′
SJpK(a,b), (a′,b′) =

∑
a′,b′

1[b ′ = a ∪ b] · BJpKa,a′

=
∑
a′

(∑
b′

1[b ′ = a ∪ b]
)
· BJpKa,a′

=
∑
a′
BJpKa,a′ = 1

where in the last step, we use that BJpK is stochastic (Theorem 4.1). □

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

30 Anon.

Proof of Lemma 5.3. By induction on n ≥ 0. For n = 0, we have∑
a′

1[b ′ = a′ ∪ b] · BJp (n)Ka,a′ =
∑
a′

1[b ′ = a′ ∪ b] · BJskipKa,a′

=
∑
a′

1[b ′ = a′ ∪ b] · 1[a = a′]

= 1[b ′ = a ∪ b]

= 1[b ′ = a ∪ b] ·
∑
a′
BJpKa,a′

=
∑
a′
SJpK(a,b), (a′,b′)

In the induction step (n > 0),∑
a′

1[b ′ = a′ ∪ b] · BJp (n)Ka,a′

=
∑
a′

1[b ′ = a′ ∪ b] · BJskip & p ; p (n−1)Ka,a′

=
∑
a′

1[b ′ = a′ ∪ b] ·
∑
c

1[a′ = a ∪ c] · BJp ; p (n−1)Ka,c

=
∑
c

*
,

∑
a′

1[b ′ = a′ ∪ b] · 1[a′ = a ∪ c]+
-
·
∑
k

BJpKa,k · BJp (n−1)Kk,c

=
∑
c,k

1[b ′ = a ∪ c ∪ b] · BJpKa,k · BJp (n−1)Kk,c

=
∑
k

BJpKa,k ·
∑
a′

1[b ′ = a′ ∪ (a ∪ b)] · BJp (n−1)Kk,a′

=
∑
k

BJpKa,k ·
∑
a′
SJpKn(k,a∪b), (a′,b′)

=
∑
a′

∑
k1,k2

1[k2 = a ∪ b] · BJpKa,k1 · SJpKn(k1,k2), (a′,b′)

=
∑
a′

∑
k1,k2

SJpK(a,b) (k1,k2) · SJpKn(k1,k2), (a′,b′)

=
∑
a′
SJpKn+1(a,b), (a′,b′) □

Lemma A.3. The matrix X = I −Q in Equation (2) of §5.1 is invertible.

Proof. Let S be a finite set of states, |S | = n,M an S × S substochastic matrix (Mst ≥ 0,M1 ≤ 1).
A state s is defective if (M1)s < 1. We sayM is stochastic ifM1 = 1, irreducible if (

∑n−1
i=0 M

i)st > 0

(that is, the support graph ofM is strongly connected), and aperiodic if all entries of some power of

M are strictly positive.

We show that ifM is substochastic such that every state can reach a defective state via a path in

the support graph, then the spectral radius ofM is strictly less than 1. Intuitively, all weight in the

system eventually drains out at the defective states.

Let es , s ∈ S , be the standard basis vectors. As a distribution, eTs is the unit point mass on s . For
A ⊆ S , let eA =

∑
s ∈A es . The L1-norm of a substochastic vector is its total weight as a distribution.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Taking Probabilistic NetKAT to the Limit 31

Multiplying on the right byM never increases total weight, but will strictly decrease it if there is

nonzero weight on a defective state. Since every state can reach a defective state, this must happen

after n steps, thus ∥eTs M
n ∥1 < 1. Let c = maxs ∥e

T
s M

n ∥1 < 1. For any y =
∑

s ases ,

∥yTMn ∥1 = ∥ (
∑
s

ases)
TMn ∥1

≤
∑
s

|as | · ∥e
T
s M

n ∥1 ≤
∑
s

|as | · c = c · ∥y
T ∥1.

Then Mn
is contractive in the L1 norm, so |λ | < 1 for all eigenvalues λ. Thus I −M is invertible

because 1 is not an eigenvalue ofM . □

Proof of Proposition 5.6.

(1) It suffices to show thatUSU = SU . Suppose that

Pr[(a,b)
U SU
−−−−→1 (a

′,b ′)] = p > 0.

It suffices to show that this implies

Pr[(a,b)
SU
−−→1 (a

′,b ′)] = p.

If (a,b) is saturated, then we must have (a′,b ′) = (∅,b) and

Pr[(a,b)
U SU
−−−−→1 (∅,b)] = 1 = Pr[(a,b)

SU
−−→1 (∅,b)]

If (a,b) is not saturated, then (a,b)
U
−→1 (a,b) with probability 1 and therefore

Pr[(a,b)
U SU
−−−−→1 (a

′,b ′)] = Pr[(a,b)
SU
−−→1 (a

′,b ′)]

(2) Since S andU are stochastic, clearly SU is a MC. Since SU is finite state, any state can reach an

absorbing communication class. (To see this, note that the reachability relation

SU
−−→ induces

a partial order on the communication classes of SU . Its maximal elements are necessarily

absorbing, and they must exist because the state space is finite.) It thus suffices to show that

a state set C ⊆ 2
Pk × 2Pk in SU is an absorbing communication class iff C = {(∅,b)} for some

b ⊆ Pk.

“⇐”: Observe that ∅
B
−→1 a′ iff a′ = ∅. Thus (∅,b)

S
−→1 (a′,b ′) iff a′ = ∅ and b ′ = b, and

likewise (∅,b)
U
−→1 (a′,b ′) iff a′ = ∅ and b ′ = b. Thus (∅,b) is an absorbing state in SU

as required.

“⇒”: First observe that by monotonicity of SU (Lemma 5.5), we have b = b ′ whenever (a,b)
SU
←−→

(a′,b ′); thus there exists a fixed bC such that (a,b) ∈ C implies b = bC .

Now pick an arbitrary state (a,bC) ∈ C . It suffices to show that (a,bC)
SU
−−→ (∅,bC), because

that implies (a,bC)
SU
←−→ (∅,bC), which in turn implies a = ∅. But the choice of (a,bC) ∈ C

was arbitrary, so that would mean C = {(∅,bC)} as claimed.

To show that (a,bC)
SU
−−→ (∅,bC), pick arbitrary states such that

(a,bC)
S
−→ (a′,b ′)

U
−→1 (a

′′,b ′′)

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

32 Anon.

and recall that this implies (a,bC)
SU
−−→ (a′′,b ′′) by claim (1). Then (a′′,b ′′)

SU
−−→ (a,bC)

becauseC is absorbing, and thus bC = b
′ = b ′′ by monotonicity of S ,U , and SU . But (a′,b ′)

was chosen as an arbitrary state S-reachable from (a,bC), so (a,b) and by transitivity

(a′,b ′) must be saturated. Thus a′′ = ∅ by the definition ofU . □

Proof of Theorem 5.7. Using Proposition 5.6.1 in the second step and equation (3) in the last step,

lim

n→∞

∑
a′

Sn(a,b), (a′,b′) = lim

n→∞

∑
a′

(SnU)(a,b), (a′,b′)

= lim

n→∞

∑
a′

(SU)n(a,b), (a′,b′)

=
∑
a′

(SU)∞(a,b), (a′,b′) = (SU)∞(a,b), (∅,b′)

(SU)∞ is computable because S andU are matrices over Q and hence so is (I −Q)−1R. □

Proof of Corollary 5.8. Recall from Corollary 4.2 that it suffices to compute the finite rational

matrices BJpK and BJqK and check them for equality. But Theorem 5.7 together with Proposi-

tion 5.2 gives us an effective mechanism to compute BJ−K in the case of Kleene star, and BJ−K is
straightforward to compute in all other cases. Summarizing the full chain of equalities, we have:

Jp∗K(a) ({b}) = BJp∗Ka,b = lim

n→∞
BJp (n)Ka,b = lim

n→∞

∑
a′
SJpKn(a,∅), (a′,b) = (SU)∞(a,∅), (∅,b)

following from Theorem 4.1, Definition of BJ−K, Proposition 5.2, and finally Theorem 5.7. □

B HANDLING FULL PROBNETKAT: OBSTACLES AND CHALLENGES
History-free ProbNetKAT can describe sophisticated network routing schemes under various

failure models, and the program semantics can be computed exactly. Performing quantitative

reasoning in full ProbNetKAT appears significantly more challenging. We illustrate some of the

difficulties in deciding program equivalence; recall that this is decidable for the history-free fragment

(Corollary 5.8).

The main difference in the original ProbNetKAT language is an additional primitive dup. Intu-
itively, this command duplicates a packet π ∈ Pk and outputs the word ππ ∈ H, where H = Pk∗

is the set of non-empty, finite sequences of packets. An element of H is called a packet history,
representing a log of previous packet states. ProbNetKAT policies may only modify the first (head)
packet of each history; dup fixes the current head packet into the log by copying it. In this way,

ProbNetKAT policies can compute distributions over the paths used to forward packets, instead of

just over the final output packets.

However, with dup, the semantics of ProbNetKAT becomes significantly more complex. Policies

p now transform sets of packet histories a ∈ 2
H
to distributions JpK(a) ∈ D (2H). Since 2

H
is

uncountable, these distributions are no longer guaranteed to be discrete, and formalizing the

semantics requires full-blown measure theory (see prior work for details [45]).

Without dup, policies operate on sets of packets 2
Pk
; crucially, this is a finite set and we can

represent each set with a single state in a finite Markov chain. With dup, policies operate on sets

of packet histories 2
H
. Since this set is not finite—in fact, it is not even countable—encoding each

packet history as a state would give a Markov chain with infinitely many states. Procedures for

deciding equivalence are not known for such systems in general.

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

Taking Probabilistic NetKAT to the Limit 33

While in principle there could be a more compact representation of general ProbNetKAT policies

as finite Markov chains or other models where equivalence is decidable, (e.g., weighted or proba-

bilistic automata [12] or quantitative variants of regular expressions [3]), we suspect that deciding

equivalence in the presence of dup may be intractable. As circumstantial evidence, ProbNetKAT

policies can simulate a probabilistic variant of multitape automaton originally introduced by Rabin

and Scott [38]. We specialize the definition here to two tapes, for simplicity, but ProbNetKAT

programs can encode any multitape automata with any fixed number of tapes.

Definition B.1. Let A be a finite alphabet. A probabilistic multitape automaton is defined by a

tuple (S, s0, ρ,τ) where S is a finite set of states; s0 ∈ S is the initial state; ρ : S → (A ∪ {_})2 maps

each state to a pair of letters (u,v), where either u or v may be a special blank character _; and the

transition function τ : S → D (S) gives the probability of transitioning from one state to another.

The semantics of an automaton can be defined as a probability measure on the space A∞ ×A∞,
where A∞ is the set of finite and (countably) infinite words over the alphabet A. Roughly, these
measures are fully determined by the probabilities of producing any two finite prefixes of words

(w,w ′) ∈ A∗ ×A∗.
Presenting the formal semantics would require more concepts from measure theory and take

us far afield, but the basic idea is simple to describe. An infinite trace of a probabilistic multitape

automaton over states s0, s1, s2, . . . gives a sequence of pairs of (possibly blank) letters:

ρ (s0), ρ (s1), ρ (s2) . . .

By concatenating these pairs together and dropping all blank characters, a trace induces two (finite

or infinite) words over the alphabet A. For example, the sequence,

(a0, _), (a1, _), (_,a2), . . .

gives the words a0a1 . . . and a2 Since the traces are generated by the probabilistic transition

function τ , each automaton gives rise to a probability measure over pairs of infinite words.

Probabilistic multitape automata can be encoded as ProbNetKAT policies with dup. We sketch the

idea here, deferring further details to Appendix C. Suppose we are given an automaton (S, s0, ρ,τ).
We build a ProbNetKAT policy over packets with two fields, st and id. The first field st ranges over
the states S and the alphabet A, while the second field id is either 1 or 2; we suppose the input set

has exactly two packets labeled with id = 1 and id = 2. In a set of packet history, the two active

packets have the same value for st ∈ S—this represents the current state in the automaton. Past

packets in the history have st ∈ A, representing the words produced so far; the first and second

components of the output are tracked by the histories with id = 1 and id = 2. We can encode the

transition function τ as a probabilistic choice in ProbNetKAT, updating the current state st of all
packets, and recording non-blank letters produced by ρ in the two components by applying dup
on packets with the corresponding value of id.

Intuitively, a set of packet histories generated by the resulting ProbNetKAT term describes a pair

of words generated by the original automaton. With a bit more bookkeeping (see Appendix C),

we can show that two probabilistic multitape automata are equivalent if and only if their encoded

ProbNetKAT policies are equivalent. Thus, deciding equivalence for ProbNetKAT with dup is

harder than deciding equivalence for probabilistic multitape automata; similar reductions have been

considered before for showing undecidability of related problems about KAT [30] and probabilistic

NetKAT [25].

Deciding equivalence between probabilistic multitape automata is a challenging open problem.

In the special case where only one word is generated (say, when the second component produced is

always blank), these automata are equivalent to standard automata with ε-transitions (e.g., see [36]).

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

34 Anon.

In this setting, non-productive steps can be eliminated and the automata can be modeled as finite

state Markov chains, where equivalence is decidable. In our setting, however, steps producing blank

letters in one component may produce non-blank letters in the other. As a result, it is not clear

how to eliminate these steps and encode our automata as Markov chains. Removing probabilities,

it is known that equivalence between non-deterministic multitape automata is undecidable [23].

Deciding equivalence of deterministic multitape automata remained a challenging open question for

many years, until Harju and Karhumäki [24] surprisingly settled the question positively;Worrell [48]

later gave an alternative proof. If equivalence of probabilistic multitape automata is undecidable,

then equivalence is undecidable for ProbNetKAT programs as well. However if equivalence turns

out to be decidable, the proof technique may shed light on how to decide equivalence for the full

ProbNetKAT language.

C ENCODING 2-GENERATIVE AUTOMATA IN FULL PROBNETKAT
To keep notation light, we describe our encoding in the special case where the alphabet A = {x ,y},
there are four states S = {s1, s2, s3, s4}, the initial state is s1, and the output function ρ is

ρ (s1) = (x , _) ρ (s2) = (y, _) ρ (s3) = (_,x) ρ (s4) = (_,y).

Encoding general automata is not much more complicated. Let τ : S → D (S) be a given transition

function; we write pi, j for τ (si) (sj). We will build a ProbNetKAT policy simulating this automaton.

Packets have two fields, st and id, where st ranges over S ∪A∪ {•} and id ranges over {1, 2}. Define:

p ≜ st=s1 ; loop∗ ; st←•

The initialization keeps packets that start in the initial state, while the final command marks

histories that have exited the loop by setting st to be the special letter •.

The main program loop first branches on the current state st:

loop ≜ case

st=s1 : state1
st=s2 : state2
st=s3 : state3
st=s4 : state4

Then, the policy simulates the behavior from each state. For instance:

state1 ≜
⊕

(if id=1 then st←x ; dup else skip) ; st←s1 @ p1,1,

(if id=1 then st←y ; dup else skip) ; st←s2 @ p1,2,

(if id=2 then st←x ; dup else skip) ; st←s3 @ p1,3,

(if id=2 then st←y ; dup else skip) ; st←s4 @ p1,4

The policies state2, state3, state4 are defined similarly.

Now, suppose we are given two probabilistic multitape automataW ,W ′
that differ only in their

transition functions. For simplicity, we will further assume that both systems have strictly positive

probability of generating a letter in either component in finitely many steps from any state. Suppose

they generate distributions µ, µ ′ respectively over pairs of infinite words Aω ×Aω
. Now, consider

the encoded ProbNetKAT policies p,p ′. We argue that JpK = JqK if and only if µ = µ ′.5

First, it can be shown that JpK = Jp ′K if and only if JpK(e) = Jp ′K(e), where

e ≜ {ππ | π ∈ Pk}.

5
We will not present the semantics of ProbNetKAT programs with dup here; instead, the reader should consult earlier

papers [13, 45] for the full development.

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

Taking Probabilistic NetKAT to the Limit 35

Let ν = JpK(e) and ν ′ = Jp ′K(e). The key connection between the automata and the encoded policies

is the following equality:

µ (Su,v) = ν (Tu,v) (6)

for every pair of finite prefixes u,v ∈ A∗. In the automata distribution on the left, Su,v ⊆ Aω ×Aω

consists of all pairs of infinite strings where u is a prefix of the first component and v is a prefix of

the second component. In the ProbNetKAT distribution on the right, we first encode u and v as

packet histories. For i ∈ {1, 2} representing the component and w ∈ A∗ a finite word, define the
history

hi (w) ∈ H ≜ (st = •, id = i), (st = w[|w |], id = i), . . . , (st = w[1], id = i), (st = s1, id = i).

The letters of the wordw are encoded in reverse order because by convention, the head/newest

packet is written towards the left-most end of a packet history, while the oldest packet is written

towards the right-most end. For instance, the final letterw[|w |] is the most recent (i.e., the latest)
letter produced by the policy. Then, Tu,v is the set of all history sets including h1 (u) and h2 (v):

Tu,v ≜ {a ∈ 2H | h1 (u) ∈ a, h2 (v) ∈ a}.

Now JpK = Jp ′K implies µ = µ ′, since (6) gives

µ (Su,v) = µ ′(Su,v).

The reverse implication is a bit more delicate. Again by (6), we have

ν (Tu,v) = ν
′(Tu,v).

We need to extend this equality to all cones, defined by packet histories h:

Bh ≜ {a ∈ 2
H | h ∈ a}.

This follows by expressing Bh as boolean combinations of Tu,v , and observing that the encoded

policy produces only sets of encoded histories, i.e., where the most recent state st is set to • and
the initial state st is set to s1.

	Abstract
	1 Introduction
	2 Overview
	2.1 A Crash Course in ProbNetKAT
	2.2 Probabilistic Programming and Reasoning.

	3 Background on Probabilistic NetKAT
	3.1 Syntax
	3.2 Semantics
	3.3 The CPO of distributions

	4 Big-Step Semantics
	4.1 Soundness

	5 Small-Step Semantics
	5.1 Closed form

	6 Implementation
	6.1 Compilation
	6.2 Evaluation

	7 Case Study: Resilient Routing
	7.1 Topology and routing
	7.2 ProbNetKAT implementation
	7.3 Checking Invariants
	7.4 F10 routing with FatTree
	7.5 Refinement
	7.6 k-resilience
	7.7 Resilience under increasing failure rate
	7.8 Cost of resilience
	7.9 Expected latency
	7.10 Discussion

	8 Related Work
	9 Conclusion
	References
	A Omitted Proofs
	B Handling Full ProbNetKAT: Obstacles and Challenges
	C Encoding 2-Generative Automata in Full ProbNetKAT

