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_ Switch A Switch B Host 2
Host 1

? "Are packets routed between hosts?"
r i "Are ssh packets dropped?"

Verification Tool O

Inputs: Network config & topology + question

Outputs: "Yes" / "No" + counterexample
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Example Network Properties

State of the art tools verify reachability properties:

Waypointing: every packet traverses a firewall
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Access Control: Intemet packets cannot enter the VLAN

Key Assumption: network behavior is deterministic



Probabilistic Network Behavior

It's often reasonable to model networks deterministically
But what if...
4+ ... a link or switch fails?

4+ ... the network employs resilient routing?
4+ "what's the probability of packet delivery?"
4+ 'what's the expected path length?"

4+... the network employs traffic engineering?

4+ 'what's the expected congestion of this link?"
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Abstract. This paper presents a new language for network program-
ming based on a probabilistic semantics. We extend the Net KATlanguage
with new primitives for expressing probabilistic behaviors and enrich the
semantics from one based on deterministic functions to one based on mea-
surable functions on sets of packet histories. We establish fundamental
properties of the semantics, prove that it is a conservative extension of
the deterministic semantics, show that it satisfies a number of natural
equations, and develop a notion of approximation. We present case stud-
ies that show how the language can be used to model a diverse collection
of scenarios drawn from real-world networks.

1 Introduction

Formal specification and verification of networks has become a reality in
recent years with the emergence of network-specific programming languages and
property-checking tools. Programming languages like Frenetic [11], Pyretic [35],
Maple [51], FlowLog [37], and others are enabling programmers to specify the
intended behavior of a network in terms of high-level constructs such as Boolean
predicates and functions on packets. Verification tools like Header Space Analy-
sis [21], VeriFlow [22], and NetKAT [12] are making it possible to check properties
such as connectivity, loop freedom, and traffic isolation automatically.

However, despite many notable advances, these frameworks all have a funda-
mental limitation: they model network behavior in terms of deterministic packet-
processing functions. This approach works well enough in settings where the
network functionality is simple, or where the properties of interest only concern
the forwarding paths used to carry traffic. But it does not provide satisfactory
accounts of more complicated situations that often arise in practice:

Congestion: the network operator wishes to calculate the expected degree
of congestion on each link given a model of the demands for traffic.

Failure: the network operator wishes to calculate the probability that packets
will be delivered to their destination, given that devices and links fail with a
certain probability.

Cantor Meets Scott: Semantic
Foundations for Probabilistic Networks
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Abstract

ProbNetKAT is a probabilistic extension of NetKAT with a de-
notational semantics based on Markov kemels. The language is
expressive enough to generate continuous distributions, which raises
the question of how to compute effectively in the language. This
paper gives an new characterization of ProbNetKAT’s semantics
using domain theory, which provides the foundation needed to build
a practical implementation. We show how to use the semantics to
approximate the behavior of arbitrary ProbNetKAT programs using
distributions with finite support. We develop a prototype implemen-
tation and show how 1o use it to solve a variety of problems including
characterizing the expected congestion induced by different rout-
ing schemes and reasoning probabilistically about reachability in a
network.

Alexandra Silva
University College London, UK

Previous work on ProbNetKAT (Foster et al. 2016) proposed
an extension to the NetKAT language (Anderson et al. 2014; Fos+{
ter et al. 2015) with a random choice operator that can be used
to express a variety of probabilistic behaviors. ProbNetK AT has a
compositional semantics based on Markov kernels that conserva-
tively extends the deterministic NetKAT semantics and has been
used to reason about various aspects of network performance includ-
ing congestion, fault tolerance, and latency. However, although the
language enjoys a number of attractive theoretical properties, there
are some major impediments to building a practical implementation:
(i) the semantics of iteration is formulated as an infinite process
rather than a fixpoint in a suitable order. and (ii) some programs
generate continuous distributions. These factors make it difficult
{0 determine when a computation has converged to its final value,
and there are also challenges related to representing and analyzing

istributions with infinite support.

Categories and Subject iptors D3.1 [ ing Lan-
guages]: Formal Definitions and Theory—Semantics

Keywords  Software-defined ing, P ilistic semantics,
Kleene algebra with tests, Domain theory, NetK AT.

1. Introduction

The recent of soft defined (SDN) has
led to the pment of a number of domain-specific program-

ming languages (Foster et al. 2011;Monsanto et al.[2013; Voellmy
etal. 2013} Nelson et al. 2014) and reasoning tools (Kazemian et al.
2012; Khurshid et al.2013; Anderson et al. 2014; Foster et al. 2015)
for networks. But there is still a large gap between the models pro-
vided by these languages and the realities of modern networks. In
particular, most existing SDN languages have semantics based on
deterministic packet-processing functions, which makes it impossi-
ble to encode probabilistic behaviors. This is unfortunate because in
the real world, network operators often use randomized protocols
and probabilistic reasoning to achieve good performance.
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This paper introduces a new semantics for ProbNetKAT, fol-
lowing the approach pioneered by Saheb-Djahromi, Jones, and
Plotkin (Saheb-Djahromi| 1980, 1978; Jones 1989; Plotkin |[1982;
Jones and Plotkin 1989). Whereas the original semantics of Prob-
NetKAT was somewhat imperative in nature, being based on stochas-
tic processes, the semantics introduced in this paper is purely func-
tional. Nevertheless, the two semantics are closely related—we give
a precise, technical characterization of the relationship between
them. The new semantics provides a suitable foundation for build-
ing a practical implementation, it provides new insights into the
nature of probabilistic behavior in networks, and it opens up several
interesting theoretical questions for future work.

Our new semantics follows the order-theoretic tradition estab-
lished in previous work on Scott-style domain theory (Scott/1972}
Abramsky and Jung| 1994). In particular, Scott-continuous maps
on algebraic and continuous DCPOs both play a key role in our
development. However, there is an interesting twist: NetKAT and
ProbNetKAT are not state-based as with most other probabilistic
systems, but are rather throughput-based. A ProbNetKAT program
can be thought of as a filter that takes an input set of packet histories
and generates an output randomly distributed on the measurable
space 2" of sets of packet histories. The closest thing to a “state™
is a set of packet histories, and the structure of these sets (e.g., the
lengths of the histories they contain and the standard subset relation)
are important considerations. Hence, the fundamental domains are
not flat domains as in traditional domain theory, but are instead the
DCPO of sets of packet histories ordered by the subset relation. An-
other point of departure from prior work is that the structures used
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We tackle the problem of deciding whether two probabilistic p are equivalent in Probabilistic NetKAT,
a formal language for specifying and reasoning about the behavior of packet-switched networks. We show
that the problem is decidable for the history-free fragment of the language by developing an effective decision
procedure based on stochastic matrices. The main challenge lies in reasoning about iteration, which we address
by designing an encoding of the program semantics as a finite-state absorbing Markov chain, whose limiting
distribution can be computed exactly. In an extended case study on a real-world data center network, we
automatically verify various quantitative properties of interest, including resilience in the presence of failures,
by analyzing the Markov chain semantics.

1 INTRODUCTION

Program equivalence is one of the most fundamental problems in Computer Science: given a pair
of programs, do they describe the same computation? The problem is undecidable in general, but it
can often be solved for domain-specific languages based on restricted computational models. For
example, a classical approach for deciding whether a pair of regular expressions denote the same
language is to first convert the expressions to deterministic finite automata, which can then be
checked for equivalence in almost linear time [32]. In addition to the theoretical motivation, there
are also many practical benefits to studying program equivalence. Being able to decide equivalence
enables more sophisticated applications, for instance in verified compilation and program synthesis.
Less obviously—but arguably more importantly—deciding equivalence typically involves finding
some sort of finite, explicit representation of the program semantics. This compact encoding can
open the door to reasoning techniques and decision procedures for properties that extend far
beyond straightforward program equivalence.

With this motivation in mind, this paper tackles the problem of deciding equivalence in Prob-
abilistic NetKAT (ProbNetKAT), a language for modeling and reasoning about the behavior of
packet-switched networks. As its name suggests, ProbNetKAT is based on NetKAT [3, 9, 30], which
is in turn based on Kleene algebra with tests (KAT), an algebraic system combining Boolean predi-
cates and regular expressions. ProbNetKAT extends NetKAT with a random choice operator and
a semantics based on Markov kernels [31]. The framework can be used to encode and reason
about randomized protocols (e.g., a routing scheme that uses random forwarding paths to balance
load [33]); describe uncertainty about traffic demands (e.g., the diurnal/nocturnal fluctuation in
access patterns commonly seen in networks for large content providers [26]); and model failures
(e.g., switches or links that are known to fail with some probability [10]).

However, the semantics of ProbNetKAT is surprisingly subtle. Using the iteration operator
(i.e., the Kleene star from regular expressions), it is possible to write programs that generate
continuous distributions over an uncountable space of packet history sets [8, Theorem 3]. This makes
reasoning about convergence non-trivial, and requires representing infinitary objects compactly

preliminary draft from March 21, 2018.
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A language for modeling & reasoning about
networks probabilistically.

[p] € 2Pkt = Dist(2Pkt)

[[p]] c ZPkt — 2Pkt

Prob + Net + KA + T

probabilistic network regular boolean
primitives primitives expressions tests

P ®rq f:=n, dup & -, * f=n
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What ProbNetKAT can do

Verify reachability properties
4+ but for probabilistic networks

Verify fault tolerance
4+ k-resilience
4+ 'is scheme A is more resilient than scheme B?"
4+ probability of packet delivery

Compute quantitative network metrics
4+ "expected number of hops?"
4+ "expected link congestion?"
4+ computes analytical solution, not approximation
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Semantics, Intuitively

Programs are random packet processing functions:

AP

input packets random output packets
function

They can be modeled as Markov chains:
. states are given by sets of packet: S = 2Pk
> Chainis given by transition matrix B € [0,1]55
B(a, b): probability of producing output b on input a
state space large, but finite!




Semantics, Formally

'Big Step” Semantics B[ p]
~captures input-output behavior of p

-~ finitely representable & explicitly computable

~ to decide p = g, simply check B[p] = B[q]

- challenge: how to define & compute B[p*1?

"Small Step" Semantics S[p]
> models single iteration of p*

B[p*] defined as n step behavior of S[pP]

forn - o

absorbing Markov chains!

imit can be computed explicitly, using theory of



Big Step Semantics

For deterministic primitives, B is just a 0-1-matrix.

_’I O O )
Bfalse] := ST

_'IO...O_

Similarly for p € { true, f=n, f:=n }.



Big Step Semantics

Program operators translate to matrix operations.

byt oby coe
: 1 b,
Blp-qll :=a |15 15 15| | 2% |
: 36 o

Bp]  Blal

Similarly forp & g, p ®r Q.



Problem: Kleene Star

Question
Let my! be the program that generates packet
Consider p = (true @ m!). What is B[p*1({ro}, {1o})?

Answer
BLp™{rto}, {mo}) = (14)"
Thus, Bl p*1({Ta}, {110})
= lim B[p™]({ro}, {o})
= lim (12)" =

But how to compute these limits in general?



Small Step Semantics

1 stepin S[pl = 1 iteration of p*

In one iteration, p™:

- executes p to get
new set of packets

© emits previous set
of packets

BIp*] = lim S[p]"

Nn—oco




Small Step Semantics

I stepin S[p] = 1 iteration of p¥

In one iteration, p™:

- executes p t0 g But hOW to a, &
new set of pag

. emits previou compute this?
of packets

BIp*] == lim S[p]"

N— oo




Absorbing Markov Chains

S[pl can be "massaged” into an absorbing Markov chain

Absorbing state: .D 1

Absorbing chain: any state can reach absorbing state

Crucial property: for #steps = oo, will reach absorbing
state with probability 1 (no matter the start state)

S
T=\p o

R 0

Am =09 R 0




Absorbing Markov Chains

S[pl can be "massaged” into an absorbing Markov chain

N 20 Blp™l=lim S[plncan Ve

be computed explicitly!

Crucial prc proing

state with prof8

lim T" =

n— 00 _(I — Q)_lR O_
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Case Study

F10: A Fault-Tolerant Engineered Network

Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, Thomas Anderson
University of Washington

Motivation
4+ short-term failures in data centers are common
4+ application performance suffers
4+ despite 1:1 redundancy!

Solution

4+ detect failures of neighboring links & switches...
4+ ...and route around them
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An ABFatTree is much like a regular FatTree

Core

s3 s4 SO

But it provides shorter detours around failures
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Case Study: Routing Schemes

We implemented F10 as a series of 3 refinements

F10o

shortest path routing

F103
=100 + 3-nop rerouting

O
O
-

2

»
o

as

>
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Q
=

O
O

F1035

~103 + 5-nop rerouting
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Case Study: k-resilience
After fixing the bug...

Sophistication of Routing Scheme

F10, F10,

8 B~ WO DN = O
> X X X X N
> X X N\

K = number of failures v = 100% packet delivery
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We evaluated packet loss when link failures increase
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Case Study: expected hop count

The price of resilience: increased paths lengths
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Case Study: expected hop count

The price of resilience: increased paths lengths
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Conclusion

ProbNetKAT Is the first tool for specifying and
veritying probabilistic networks

Can verify reachability properties
even If network behavior is not deterministic

Can reason about resilience
e.g., k-resilience, probability of delivery

Can reason about quantitative properties
e.g., expected path length under failure model
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Future Work

Scalable implementation
Heuristics that enable representing sparse
matrices efficiently

Probabilistic Inference
Given observation of packet loss, what link
failure i1s most likely to have occurred?

Language Design
ProbNetKAT has no notion of queueing or time






