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What if it's a programmable router?
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NetCache: Balancing Key-Value Stores
with Fast In-Network Caching

Xin Jin!, Xiaozhou Li?, Haoyu Zhang3, Robert Soulé?*,
Jeongkeun Lee?, Nate Foster?>, Changhoon Kim?, Ton Stoica®

Johns Hopkins University, 2Barefoot Networks, *Princeton University,
*Universita della Svizzera italiana, *Cornell University, © UC Berkeley

ABSTRACT

We present NetCache, a new key-value store architecture that
leverages the power and flexibility of new-generation pro-
grammable switches to handle queries on hot items and bal-
ance the load across storage nodes. NetCache provides high
aggregate throughput and low latency even under highly-
skewed and rapidly-changing workloads. The core of Net-
Cache is a packet-processing pipeline that exploits the ca-
pabilities of modern programmable switch ASICs to effi-
ciently detect, index, cache and serve hot key-value items in
the switch data plane. Additionally, our solution guarantees
cache coherence with minimal overhead. We implement a
NetCache prototype on Barefoot Tofino switches and com-
modity servers and demonstrate that a single switch can pro-
cess 2+ billion queries per second for 64K items with 16-byte
keys and 128-byte values, while only consuming a small por-
tion of its hardware resources. To the best of our knowledge,
this is the first time that a sophisticated application-level
functionality, such as in-network caching, has been shown
to run at line rate on programmable switches. Furthermore,
we show that NetCache improves the throughput by 3-10x
and reduces the latency of up to 40% of queries by 50%, for
high-performance, in-memory key-value stores.

CCS CONCEPTS

« Information systems — Key-value stores; - Networks
— Programmable networks; In-network processing; .
Computer systems organization — Cloud computing;

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not
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Key-value stores; Programmable switches; Caching

ACM Reference Format:

Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee,
Nate Foster, Changhoon Kim, Ion Stoica. 2017. NetCache: Balancing
Key-Value Stores with Fast In-Network Caching. In Proceedings of
SOSP ’17, Shanghai, China, October 28, 2017, 17 pages.
https://doi.org/10.1145/3132747.3132764

1 INTRODUCTION

Modern Internet services, such as search, social networking
and e-commerce, critically depend on high-performance key-
value stores. Rendering even a single web page often requires
hundreds or even thousands of storage accesses [34]. So, as
these services scale to billions of users, system operators
increasingly rely on in-memory key-value stores to meet the
necessary throughput and latency demands [32, 36, 38].

One major challenge in scaling a key-value store—whether
in memory or not—is coping with skewed, dynamic work-
loads. Popular items receive far more queries than others, and
the set of “hot items” changes rapidly due to popular posts,
limited-time offers, and trending events [2, 11, 19, 21]. For
example, prior studies have shown that 10% of items account
for 60-90% of queries in the Memcached deployment at Face-
book [2]. This skew can lead to severe load imbalance, which
results in significant performance degradations: servers are
either over- or under-utilized, throughput is reduced, and
response times suffer from long tail latencies [14]. This degra-
dation can be further amplified when storage servers use
per-core sharding to handle high concurrency [5].

The problem of load imbalance is particularly acute for
hich-performance. in-memorv kev-value stores. While tra-
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Abstract

Coordination services are a fundamental building block
of modern cloud systems, providing critical functionali-
ties like configuration management and distributed lock-
ing. The major challenge is to achieve low latency
and high throughput while providing strong consistency
and fault-tolerance. Traditional server-based solutions
require multiple round-trip times (RTTs) to process a
query. This paper presents NetChain, a new approach
that provides scale-free sub-RTT coordination in dat-
acenters. NetChain exploits recent advances in pro-
grammable switches to store data and process queries
entirely in the network data plane. This eliminates the
query processing at coordination servers and cuts the
end-to-end latency to as little as half of an RTT—clients
only experience processing delay from their own soft-
ware stack plus network delay, which in a datacenter set-
ting is typically much smaller. We design new proto-
cols and algorithms based on chain replication to guar-
antee strong consistency and to efficiently handle switch
failures. We implement a prototype with four Barefoot
Tofino switches and four commodity servers. Evaluation
results show that compared to traditional server-based
solutions like ZooKeeper, our prototype provides orders
of magnitude higher throughput and lower latency, and
handles failures gracefully.

1 Introduction

Coordination services (e.g., Chubby [1], ZooKeeper [2]
and etcd [3]) are a fundamental building block of mod-
ern cloud systems. They are used to synchronize ac-
cess to shared resources in a distributed system, provid-
ing critical functionalities such as configuration manage-
ment, group membership, distributed locking, and bar-
riers. These various forms of coordination are typically
implemented on top of a key-value store that is replicated
with a consensus protocol such as Paxos [4] for strong
consistency and fault-tolerance.

DrTM [6], which can process hundreds of millions of
transactions per second with a latency of tens of mi-
croseconds, crucially depend on fast distributed locking
to mediate concurrent access to data partitioned in mul-
tiple servers. Unfortunately, acquiring locks becomes a
significant bottleneck which severely limits the transac-
tion throughput [7]. This is because servers have to spend
their resources on (i) processing locking requests and (i)
aborting transactions that cannot acquire all locks under
high-contention workloads, which can be otherwise used
to execute and commit transactions. This is one of the
main factors that led to relaxing consistency semantics
in many recent large-scale distributed systems [8, 9], and
the recent efforts to avoid coordination by leveraging ap-
plication semantics [10, 11]. While these systems are
successful in achieving high throughput, unfortunately,
they restrict the programming model and complicate the
application development. A fast coordination service
would enable high transaction throughput without any of
these compromises.

Today’s server-based solutions require multiple end-
to-end round-trip times (RTTs) to process a query [1, 2,
3]: a client sends a request to coordination servers; the
coordination servers execute a consensus protocol, which
can take several RTTs; the coordination servers send a re-
ply back to the client. Because datacenter switches pro-
vide sub-microsecond per-packet processing delay, the
query latency is dominated by host delay which is tens
to hundreds of microseconds for highly-optimized im-
plementations [12]. Furthermore, as consensus protocols
do not involve sophisticated computations, the workload
is communication-heavy and the throughput is bottle-
necked by the server I0. While state-of-the-art solutions
such as NetBricks [12] can boost a server to process tens
of millions of packets per second, it is still orders of mag-
nitude slower than a switch.

We present NetChain, a new approach that lever-
qoes the nower and flexibilitv of new-oceneration npro-
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2 Language
- Domain-specific parsers and match-action tables

- Standard imperative features (types and control flow)

- Slogan: "constant work in constant time"
-Bounded state
-No loops

action allow() {

modify field(std _meta.egress spec,1);
}
action deny() {

drop ();

}
table acl {

reads {

deny

ipv4.srcAddr : lpm; *

ipv4.dstAddr : lpm; allow
}
actions { allow; deny; }
default_action: deny;

¥



Example: Firewall
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Example: Firewall
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132.236.207.20 => 132.236.207.20 =>
10.0.0.99 deny



This is not a toy example!

©® © @ [ Network path not found? - For x e

& C' @ Secure | https://www.forwardnetworks.com/2017/02/23/network-path-not-found-how-to-use-an-army... @ v @ & O

PRODUCT v RESOURCES NEWS & EVENTS COMPANY v BLOG REQUEST A DEMO

Network path not found?

FEBRUARY 23,2017 | IN NETWORKING, PRODUCT | BY PEYMAN KAZEMIAN

How to use an army of tests to understand
and diagnose your network!




Demo: Firewall

/* Headers and Instances */ /* Actions */
header_type ethernet t { action allow() {
fields { modify field(standard _metadata.egress spec,1);
dst _addr:48; }
src_addr:48; action deny() { dA i
ether_type:16; action nop() { } et ons
} action rewrite(src_addr,dst_addr) {
} modify field(ipv4.dst_addr,src_addr);

header_ type ipv4 t

{
f;iiiic§:64; Types /

modify field(ipv4.dst_addr,dst _addr);

ttl:8; /* Tables */
protocol:8; table acl {
checksum: 16; reads {
src_addr:32; ipv4.src_addr:lpm;
dst_addr: 32; ipv4d.dst _addr:1lpm;
} }
} actions { allow; deny; }
header ethernet_t ethernet; size: 1024; T bl
header ipv4_t ipv4; } a es
/* Parsers */ table nat {
parser start reads { ipv4.dst _addr:lpm; }
extract(ethernet); actions { rewrite; nop; }
return select(ethernet.ether_type) { default_action: nop();
Ox800: parse_ipv4; size: 8192;
default: ingr‘P‘arsers }
}
} /* Controls */
parser parse_ipv4 { control ingress ContrOIS
extract(ipv4); apply(acl);
return ingress; apply(nat);

} }



Verification Approach
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Guarded Commands

n | x| el + e2 | ... (* Expressions *)

el = e2 | ¢o1 A 2 | ...

assume ¢
assert ¢
cl; c2
X 1= €
cl [] c2

(* Formulas *)

(* Commands *)



Verification Condition Generation

wlp(assume ¢, ¢) 2 ¢ = ¢
wlp(assert Y, ¢) 2 b A ¢
wlp(cl; c2, ¢) 2 wlp(cl, wlp(c2, ¢))
wlp(x := e, ¢) = ¢[e / x]

wlp(cl [] c2, ¢) = wlp(cl, ¢) A wlp(c2, ¢)



Verification Condition Generation

wlp(assume ¢, ¢) 2 b = ¢
wlp(assert Y, ¢) 2 b A ¢
wlp(cl; c2, ¢) 2 wlp(cl, wlp(c2, o))
wlp(x :=e, ¢) = ¢[e / x]

wlp(cl [] c2, ¢) = wlp(cl, ¢) A wlp(c2, ¢)

Can generate efficient preconditions using the
translation due to Saxe and Flanagan [POPL '01]



Challenge: Modeling Control Plane

A P4 program is really only half of —
a program... @@
The match-action tables are

populated by the control plane K/

which is unknown!

-ormally, table application is
translated to a non-deterministic @
choice between actions or miss

n general, to verify realistic > aa deny
orograms we need to model the : —
oehavior of the control plane




Solution: Ghost State

$pd4v_zombie.reach$acl := 1we;
$pdv_zombie.hit$acl := 1we;
$pdv_zombie.action$acl := 2wo;
$pdv_zombie.reads$acl$e := 32w0;
$pdv_zombie.reads$acl$l := 32w0;



Solution: Ghost State

1wo;

$p4v_zombie.
.hit$acl :=
.action%$acl
.reads$acl$o :
.reads$acl$l :

\

$p4v_zombie
$p4v_zombie
$p4v_zombie
$p4v_zombie

apply(acl);

$p4v_zombie.reach$acl

reach$acl :

$p4v_zombie.reads$acl$e

$p4v_zombie.reads$acl$l :

@[ Match ] acl;

{($p4v_zombie.hit$acl

$p4v_zombie.action$acl
standard_metadata.egress_spec :=

1wo;
2W0;

32w0;
32w0;

1wl;

ipv4.src_addr;
ipv4.dst _addr;

1wl;
{ (@[ Action ] acl <hit> (allow);

:= 2wl;
owl;

[1(@[ Action ] acl <hit> (deny);

$p4v_zombie.action$acl
standard_metadata.egress_spec :=

[1($p4v_zombie.hit$acl :
@[ Action ] acl <miss>) };

i= 2W2;
9w511)

1wo)

1)



assume
reads(acl, ip4v.dst addr) == 132.236.207.20
implies
action(acl) == deny



assume

reads(acl, ip4v.dst addr) == 132.236.207.20
implies

action(acl) == deny

\

assume

$p4v zombie.reads$acl$l == 32w2230112020
implies

$p4v zombie.action$acl == 2w2



Subtlety: How to bridge two views?
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Our solution:
- Write the control-plane invariant in terms of data

plane state (reads, action, etc)
- Predicate every assertion in the data plane on the

control-plane invariant
- This means that control-plane invariants must be

location-independent!



Aside: we may see more of this...

Domain Specific Languages

DSAs require targeting of high level operations to the

architecture

® Hard to start with C or Python-like language and recover
structure

® Need matrix, vector, or sparse matrix operations

® Domain Specific Languages specify these operations:
o OpenGL, TensorFlow, P4

e |f DSL programs retain architecture-independence, interesting

compiler challenges will exist
o XLA

‘XLA - TensorFlow, Compiled”, XLA Team, March 6, 2017
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Data Plane Errors

- Reading/writing invalid headers ‘

- Unhanded exceptions o

- Incorrect use of packet metadata
- Malformed parsers/deparsers
- Unintended control flows




Header Validity

The P4 Language Specification

Version 1.0.4
May 24, 2017

The P4 Language Consortium

1 Introduction

P4 is a declarative language for expressing how packets are processed by the pipeline
of a network forwarding element such as a switch, NIC, router or network function ap-
pliance. It is based upon an abstract forwarding model consisting of a parser and a set
of match+action table resources, divided between ingress and egress. The parser iden-
tifies the headers present in each incoming packet. Each match+action table performs
alookup on a subset of header fields and applies the actions corresponding to the first
match within each table. Figure 1 shows this model.

P4 itself is protocol independent but allows for the expression of forwarding plane pro-
tocols. A P4 program specifies the following for each forwarding element.

e Header definitions: the format (the set of fields and their sizes) of each header
within a packet.

e Parse graph: the permitted header sequences within packets.

e Tabledefinitions: the type of lookup to perform, the input fields to use, the actions
that may be applied, and the dimensions of each table.

e Action definitions: compound actions composed from a set of primitive actions.

* Pipeline layout and control flow: the layout of tables within the pipeline and the
packet flow through the pipeline.

P4 addresses the configuration of a forwarding element. Once configured, tables may
be populated and packet processing takes place. These post-configuration operations
are referred to as "run time" in this document. This does not preclude updating a for-
warding element’s configuration while it is running.

1.1 The P4 Abstract Model

The following diagram shows a high level representation of the P4 abstract model.

The P4 machine operates with only a few simple rules.

© 2014-2017, The P4 Language Consortium

References at run time to
a header instance (or one
of its fields) which is not
valid results in a special
“undefined” value.

The implications of this
depend on the context.




Example: switch.p4 Parser

The analog of Hoare's "$1B mistake" leads to significant
complications in real-world programs like switch.p4




switch.p4 Validity

Statistics
. /KLoC
- 53 parse states
. 120 match-action tables

Control-Plane Annotations
. /58 LoC
. ~2 days of programmer effort
. Default actions (30)
. Fabric wellformedness (14)
. Table actions (66)
. Guarded reads (10)
. Action data (14)
Bugs
- Parser bugs (2)
. Action flaws (4)
- Infeasible control-plane (3)
- Invalid read (1)



switch.p4 Validity

Statistics
. /KLoC
- 53 parse states
. 120 match-action tables

Control-Plane Annotations
. /58 LoC
~2 days of programmer effort
Default actions (30)
Fabric wellformedness (14)
Table actions (66)
Guarded reads (10)
Action data (14)
Bugs
- Parser bugs (2)
. Action flaws (4)
- Infeasible control-plane (3)
- Invalid read (1)

// For a fabric unicast/multicast packet whose ingressTunnelType is IP-in-IP,
// ipvX and inner_ipvX must be valid.

assume
((fabric_ingress_dst lkp valid fabric_header_unicast == 1 and
fabric_ingress_dst lkp fabric_header_unicast_ingressTunnelType == 3) or
(fabric_ingress_dst_1lkp_valid fabric_header_multicast == 1 and
fabric_ingress_dst lkp fabric_header _multicast _ingressTunnelType == 3))
implies

((fabric_ingress_dst_lkp_valid_ipv4 == 1 or
fabric_ingress_dst_lkp_valid_ipv6 == 1) and
(fabric_ingress_dst_lkp valid _inner_ipv4 == 1 or
fabric_ingress_dst_lkp_valid_inner_ipv6 == 1))




Parser and Deparser Compatbility

In PISA, state is copied verbatim from ingress to egress...
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Parser and Deparser Compatbility

In PISA, state is copied verbatim from ingress to egress...

HHEE
HHEE

UL

CAACA A

A
vovuwv

2 2

Parser Ingress Egress Deparser

In reality, the parser and deparser are used to (de)serialize state...



Experiments

Program LOC Time (ms) |
axon 100 313
dapper 618 34691 80%-
easyroute 53 32
flowlet_swit 251 32 0% m s
linear_road 883 /6 W passive
nat 294 50 e
ndn 525 685 B rancae
Daxos 205 41
simple_rout 64 33 20%
switch 7304 15,579
tor 472 76 - L ==
\/pC 278 42 dapper switch switch w/ assumes tlv_parsing overall




Conclusions

- The intersection between networking and formal
methods has gotten very interesting in recent years

- The P4 language offers a unique opportunity to
shape how networks are built for decades to come

- Many challenging problems remain:
-Domain-specific annotation language
- Synthesis of control-plane annotations
-Veritying control-plane annotations

- Usability of tools by non-experts
-Extending to networks of P4 routers




