4v

Jed Liu Robert Soule
Bill Hallahan Han Wang
Cole Schlesinger Calin Cascaval
Milad Sharif Nick McKeown
Jeongkeun Lee Nate Foster

Y

p4v

Or, how | learned to stop
worrying and trust Z3

Jed Liu Robert Soule

Bill Hallahan Han Wang
Cole Schlesinger Calin Cascaval
Milad Sharif Nick McKeown
Jeongkeun Lee Nate Foster

) 4

Suppose you buy a router...

....... .‘.‘.l
W we e e e e e

Question: How do you ensure that it works as expected?

Suppose you buy a router...

(2 2 D WERTETISTINTENTY = m'w !

- T I
i
e '

Question: How do you ensure that it works as expected?

Answer: lest [t/

What if it's a programmable router?

\

f_—T."F.-- ---zr;--.r-r—-c——:—:r—:'W’-Twrr‘m'ﬁm'—a—-r—r—ﬁmm

AAR[STA 7170.84C e ———
mzzzs amaalERERERRRRREE: SEEEETEEEanEnEs , | o ...===.=EEEEEEE

uestion: Now what do you do?

What if it's a programmable router?

TARISTA 110eic P ————— = '
==EEEEEEEEEEEE

uestion: Now what do you do?

What if it's a programmable router?

uestion: Now what do you do?

Example: NetChain & NetCache

Example: NetChain & NetCache

NetCache: Balancing Key-Value Stores
with Fast In-Network Caching

Xin Jin!, Xiaozhou Li?, Haoyu Zhang3, Robert Soulé?*,
Jeongkeun Lee?, Nate Foster?>, Changhoon Kim?, Ton Stoica®

Johns Hopkins University, 2Barefoot Networks, *Princeton University,
*Universita della Svizzera italiana, *Cornell University, © UC Berkeley

ABSTRACT

We present NetCache, a new key-value store architecture that
leverages the power and flexibility of new-generation pro-
grammable switches to handle queries on hot items and bal-
ance the load across storage nodes. NetCache provides high
aggregate throughput and low latency even under highly-
skewed and rapidly-changing workloads. The core of Net-
Cache is a packet-processing pipeline that exploits the ca-
pabilities of modern programmable switch ASICs to effi-
ciently detect, index, cache and serve hot key-value items in
the switch data plane. Additionally, our solution guarantees
cache coherence with minimal overhead. We implement a
NetCache prototype on Barefoot Tofino switches and com-
modity servers and demonstrate that a single switch can pro-
cess 2+ billion queries per second for 64K items with 16-byte
keys and 128-byte values, while only consuming a small por-
tion of its hardware resources. To the best of our knowledge,
this is the first time that a sophisticated application-level
functionality, such as in-network caching, has been shown
to run at line rate on programmable switches. Furthermore,
we show that NetCache improves the throughput by 3-10x
and reduces the latency of up to 40% of queries by 50%, for
high-performance, in-memory key-value stores.

CCS CONCEPTS

« Information systems — Key-value stores; - Networks
— Programmable networks; In-network processing; .
Computer systems organization — Cloud computing;

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not
mrnda Ar dickrihiitad fAv A £t o marraroreial adsrarntacra arnd flhat ~Aarmtoce haay

KEYWORDS
Key-value stores; Programmable switches; Caching

ACM Reference Format:

Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee,
Nate Foster, Changhoon Kim, Ion Stoica. 2017. NetCache: Balancing
Key-Value Stores with Fast In-Network Caching. In Proceedings of
SOSP ’17, Shanghai, China, October 28, 2017, 17 pages.
https://doi.org/10.1145/3132747.3132764

1 INTRODUCTION

Modern Internet services, such as search, social networking
and e-commerce, critically depend on high-performance key-
value stores. Rendering even a single web page often requires
hundreds or even thousands of storage accesses [34]. So, as
these services scale to billions of users, system operators
increasingly rely on in-memory key-value stores to meet the
necessary throughput and latency demands [32, 36, 38].

One major challenge in scaling a key-value store—whether
in memory or not—is coping with skewed, dynamic work-
loads. Popular items receive far more queries than others, and
the set of “hot items” changes rapidly due to popular posts,
limited-time offers, and trending events [2, 11, 19, 21]. For
example, prior studies have shown that 10% of items account
for 60-90% of queries in the Memcached deployment at Face-
book [2]. This skew can lead to severe load imbalance, which
results in significant performance degradations: servers are
either over- or under-utilized, throughput is reduced, and
response times suffer from long tail latencies [14]. This degra-
dation can be further amplified when storage servers use
per-core sharding to handle high concurrency [5].

The problem of load imbalance is particularly acute for
hich-performance. in-memorv kev-value stores. While tra-

Example: NetChain & NetCache

NetCache: Balg
with Fast I

Xin Jin!, Xiaozhou L
Jeongkeun Lee?, Nate F(

!Johns Hopkins University]
“Universita della Svizzera

ABSTRACT

We present NetCache, a new key-value store architecty
leverages the power and flexibility of new-generati
grammable switches to handle queries on hot items 4
ance the load across storage nodes. NetCache provids
aggregate throughput and low latency even under

skewed and rapidly-changing workloads. The core

Cache is a packet-processing pipeline that exploits

pabilities of modern programmable switch ASICs

ciently detect, index, cache and serve hot key-value i
the switch data plane. Additionally, our solution guaf
cache coherence with minimal overhead. We imple
NetCache prototype on Barefoot Tofino switches an
modity servers and demonstrate that a single switch ¢
cess 2+ billion queries per second for 64K items with }
keys and 128-byte values, while only consuming a smj
tion of its hardware resources. To the best of our knoy
this is the first time that a sophisticated applicatio
functionality, such as in-network caching, has been

to run at line rate on programmable switches. Furthg
we show that NetCache improves the throughput by
and reduces the latency of up to 40% of queries by 5
high-performance, in-memory key-value stores.

CCS CONCEPTS

« Information systems — Key-value stores; « Net
— Programmable networks; In-network proces|
Computer systems organization — Cloud comgp

Permission to make digital or hard copies of all or part of this {
personal or classroom use is granted without fee provided that copig

minda Ar dickrihitvad fAav et Av crAatrmrorecial adsrantacas armd thaot ~~d

NetChain: Scale-Free Sub-RTT Coordination

Xin Jin!, Xiaozhou LiZ, Haoyu Zhang3, Nate Foster>*,

Jeongkeun Lee2, Robert Soulé?”, Changhoon Kim?Z, Ton Stoica

6

Johns Hopkins University, >2Barefoot Networks, 3 Princeton University,
4Cornell University, S Universita della Svizzera italiana, © UC Berkeley

Abstract

Coordination services are a fundamental building block
of modern cloud systems, providing critical functionali-
ties like configuration management and distributed lock-
ing. The major challenge is to achieve low latency
and high throughput while providing strong consistency
and fault-tolerance. Traditional server-based solutions
require multiple round-trip times (RTTs) to process a
query. This paper presents NetChain, a new approach
that provides scale-free sub-RTT coordination in dat-
acenters. NetChain exploits recent advances in pro-
grammable switches to store data and process queries
entirely in the network data plane. This eliminates the
query processing at coordination servers and cuts the
end-to-end latency to as little as half of an RTT—clients
only experience processing delay from their own soft-
ware stack plus network delay, which in a datacenter set-
ting is typically much smaller. We design new proto-
cols and algorithms based on chain replication to guar-
antee strong consistency and to efficiently handle switch
failures. We implement a prototype with four Barefoot
Tofino switches and four commodity servers. Evaluation
results show that compared to traditional server-based
solutions like ZooKeeper, our prototype provides orders
of magnitude higher throughput and lower latency, and
handles failures gracefully.

1 Introduction

Coordination services (e.g., Chubby [1], ZooKeeper [2]
and etcd [3]) are a fundamental building block of mod-
ern cloud systems. They are used to synchronize ac-
cess to shared resources in a distributed system, provid-
ing critical functionalities such as configuration manage-
ment, group membership, distributed locking, and bar-
riers. These various forms of coordination are typically
implemented on top of a key-value store that is replicated
with a consensus protocol such as Paxos [4] for strong
consistency and fault-tolerance.

DrTM [6], which can process hundreds of millions of
transactions per second with a latency of tens of mi-
croseconds, crucially depend on fast distributed locking
to mediate concurrent access to data partitioned in mul-
tiple servers. Unfortunately, acquiring locks becomes a
significant bottleneck which severely limits the transac-
tion throughput [7]. This is because servers have to spend
their resources on (i) processing locking requests and (i)
aborting transactions that cannot acquire all locks under
high-contention workloads, which can be otherwise used
to execute and commit transactions. This is one of the
main factors that led to relaxing consistency semantics
in many recent large-scale distributed systems [8, 9], and
the recent efforts to avoid coordination by leveraging ap-
plication semantics [10, 11]. While these systems are
successful in achieving high throughput, unfortunately,
they restrict the programming model and complicate the
application development. A fast coordination service
would enable high transaction throughput without any of
these compromises.

Today’s server-based solutions require multiple end-
to-end round-trip times (RTTs) to process a query [1, 2,
3]: a client sends a request to coordination servers; the
coordination servers execute a consensus protocol, which
can take several RTTs; the coordination servers send a re-
ply back to the client. Because datacenter switches pro-
vide sub-microsecond per-packet processing delay, the
query latency is dominated by host delay which is tens
to hundreds of microseconds for highly-optimized im-
plementations [12]. Furthermore, as consensus protocols
do not involve sophisticated computations, the workload
is communication-heavy and the throughput is bottle-
necked by the server I0. While state-of-the-art solutions
such as NetBricks [12] can boost a server to process tens
of millions of packets per second, it is still orders of mag-
nitude slower than a switch.

We present NetChain, a new approach that lever-
qoes the nower and flexibilitv of new-oceneration npro-

An practical
P4-prog

This Talk

Oro

arre

Derty-cr

mable ¢

ecking tool for
ata planes

An practical
P4-prog

Plan:

This Talk

Oro

arre

Derty-cr

mable ¢

ecking tool for
ata planes

 Background on P4 language
» Verification approach

e CXpPerience

Background

[~

2

PISA [SIGCOMM "13]

Traffic
Manager

HHEE

Parser

Ingress

2

PISA [SIGCOMM "13]

Traffic
Manager

HHEE

Parser

Ingress

2

PISA [SIGCOMM "13]

Traffic
Manager

HHEE

Parser

Ingress

2

PISA [SIGCOMM "13]

Traffic
Manager

HHEE

Parser

Ingress

2

PISA [SIGCOMM "13]

—_,

Traffic
Manager

HHEE

Parser

Ingress

PISA [SIGCOMM "13]

Traffic
Manager

2

BUERRN
HHEE

Parser Ingress

2

PISA [SIGCOMM "13]

Traffic

Manager

HHEE

Parser

Ingress

PISA [SIGCOMM "13]

—11
—11
—11
—1T11

Traffic
Manager

2

Parser Ingress

2 Language
- Domain-specific parsers and match-action tables

- Standard imperative features (types and control flow)

- Slogan: "constant work in constant time"
-Bounded state
-No loops

action allow() {

modify field(std _meta.egress spec,1);
}
action deny() {

drop ();

}
table acl {

reads {

deny

ipv4.srcAddr : lpm; *

ipv4.dstAddr : lpm; allow
}
actions { allow; deny; }
default_action: deny;

¥

Example: Firewall

10.0.0.99

—d
-

Server

Example: Firewall

ACL

NAT

10.0.0.99

132.236.207.20 => 132.236.207.20 =>

deny

10.0.0.99

g
_

Server

132.236.207.20

Example: Firewall

ACL

NAT

10.0.0.99

132.236.207.20 => 132.236.207.20 =>

deny

10.0.0.99

g
_

Server

Example: Firewall

132.236.207.20

ACL

NAT

10.0.0.99

132.236.207.20 => 132.236.207.20 =>

deny

10.0.0.99

g
_

Server

Example: Firewall

ACL

NAT

10.0.0.99

132.236.207.20 => 132.236.207.20 =>

deny

10.0.0.99

g
_

Server

Example: Firewall

NAT

ACL

10.0.0.99

132.236.207.20 => 132.236.207.20 =>

10.0.0.99

deny

g
_

Server

132.236.207.20

Example: Firewall

NAT

ACL

10.0.0.99

132.236.207.20 => 132.236.207.20 =>

10.0.0.99

deny

g
_

Server

Example: Firewall

132.236.207.20

NAT

ACL

10.0.0.99

132.236.207.20 => 132.236.207.20 =>

10.0.0.99

deny

g
_

Server

Example: Firewall

10.0.0.99

NAT

ACL

10.0.0.99

132.236.207.20 => 132.236.207.20 =>

10.0.0.99

deny

g
_

Server

Example: Firewall

10.0.0.99

NAT ACL

132.236.207.20 => 132.236.207.20 =>
10.0.0.99 deny

Server

Example: Firewall

10.0.0.99

Server

NAT ACL

132.236.207.20 => 132.236.207.20 =>
10.0.0.99 deny

This is not a toy example!

©® © @ [Network path not found? - For x e

& C' @ Secure | https://www.forwardnetworks.com/2017/02/23/network-path-not-found-how-to-use-an-army... @ v @ & O

PRODUCT v RESOURCES NEWS & EVENTS COMPANY v BLOG REQUEST A DEMO

Network path not found?

FEBRUARY 23,2017 | IN NETWORKING, PRODUCT | BY PEYMAN KAZEMIAN

How to use an army of tests to understand
and diagnose your network!

Demo: Firewall

/* Headers and Instances */ /* Actions */
header_type ethernet t { action allow() {
fields { modify field(standard _metadata.egress spec,1);
dst _addr:48; }
src_addr:48; action deny() { dA i
ether_type:16; action nop() { } et ons
} action rewrite(src_addr,dst_addr) {
} modify field(ipv4.dst_addr,src_addr);

header_ type ipv4 t

{
f;iiiic§:64; Types /

modify field(ipv4.dst_addr,dst _addr);

ttl:8; /* Tables */
protocol:8; table acl {
checksum: 16; reads {
src_addr:32; ipv4.src_addr:lpm;
dst_addr: 32; ipv4d.dst _addr:1lpm;
} }
} actions { allow; deny; }
header ethernet_t ethernet; size: 1024; T bl
header ipv4_t ipv4; } a es
/* Parsers */ table nat {
parser start reads { ipv4.dst _addr:lpm; }
extract(ethernet); actions { rewrite; nop; }
return select(ethernet.ether_type) { default_action: nop();
Ox800: parse_ipv4; size: 8192;
default: ingr‘P‘arsers }
}
} /* Controls */
parser parse_ipv4 { control ingress ContrOIS
extract(ipv4); apply(acl);
return ingress; apply(nat);

} }

Verification Approach

Overview

Control-Plane Source bt
Assumptions Program [] Passed

\-/- \T‘
GCL Program

Y

Instrumented

)

I i
)
)

] Failed x

]

start

_parse_ethernet

ethernet.dstAddr = 0x000000000000
ethernet.srcAddr = 9x000000000000
ethernet.etherType = Oxf7ff

(not (= ipv4.valid 1we))

Y

Passivized

v

Optimized

| s B s B ey B s B e B s B s B | .
et e e b] Ll

Verification |
Conditions

7 N ¢ N N 0O N N

Guarded Commands

n | x| el + e2 | ... (* Expressions *)

el = e2 | ¢o1 A 2 | ...

assume ¢
assert ¢
cl; c2
X 1= €
cl [] c2

(* Formulas *)

(* Commands *)

Verification Condition Generation

wlp(assume ¢, ¢) 2 ¢ = ¢
wlp(assert Y, ¢) 2 b A ¢
wlp(cl; c2, ¢) 2 wlp(cl, wlp(c2, ¢))
wlp(x := e, ¢) = ¢[e / x]

wlp(cl [] c2, ¢) = wlp(cl, ¢) A wlp(c2, ¢)

Verification Condition Generation

wlp(assume ¢, ¢) 2 b = ¢
wlp(assert Y, ¢) 2 b A ¢
wlp(cl; c2, ¢) 2 wlp(cl, wlp(c2, o))
wlp(x :=e, ¢) = ¢[e / x]

wlp(cl [] c2, ¢) = wlp(cl, ¢) A wlp(c2, ¢)

Can generate efficient preconditions using the
translation due to Saxe and Flanagan [POPL '01]

Challenge: Modeling Control Plane

A P4 program is really only half of —
a program... @@
The match-action tables are

populated by the control plane K/

which is unknown!

-ormally, table application is
translated to a non-deterministic @
choice between actions or miss

n general, to verify realistic > aa deny
orograms we need to model the : —
oehavior of the control plane

Solution: Ghost State

$pd4v_zombie.reach$acl := 1we;
$pdv_zombie.hit$acl := 1we;
$pdv_zombie.action$acl := 2wo;
$pdv_zombie.reads$acl$e := 32w0;
$pdv_zombie.reads$acl$l := 32w0;

Solution: Ghost State

1wo;

$p4v_zombie.
.hit$acl :=
.action%$acl
.readsaclo :
.readsacll :

\

$p4v_zombie
$p4v_zombie
$p4v_zombie
$p4v_zombie

apply(acl);

$p4v_zombie.reach$acl

reach$acl :

$p4v_zombie.reads$acl$e

$p4v_zombie.reads$acl$l :

@[Match] acl;

{($p4v_zombie.hit$acl

$p4v_zombie.action$acl
standard_metadata.egress_spec :=

1wo;
2W0;

32w0;
32w0;

1wl;

ipv4.src_addr;
ipv4.dst _addr;

1wl;
{ (@[Action] acl <hit> (allow);

:= 2wl;
owl;

[1(@[Action] acl <hit> (deny);

$p4v_zombie.action$acl
standard_metadata.egress_spec :=

[1($p4v_zombie.hit$acl :
@[Action] acl <miss>) };

i= 2W2;
9w511)

1wo)

1)

assume
reads(acl, ip4v.dst addr) == 132.236.207.20
implies
action(acl) == deny

assume

reads(acl, ip4v.dst addr) == 132.236.207.20
implies

action(acl) == deny

\

assume

$p4v zombie.reads$acl$l == 32w2230112020
implies

$p4v zombie.action$acl == 2w2

Subtlety: How to bridge two views?

_—
52

S

Control-plane: behavior
viewed in terms of an invariant

on rou

Data-

ler configuration

plane: behavior

viewed through the lens of an
execution of the P4 program

Our solution:
- Write the control-plane invariant in terms of data

plane state (reads, action, etc)
- Predicate every assertion in the data plane on the

control-plane invariant
- This means that control-plane invariants must be

location-independent!

Aside: we may see more of this...

Domain Specific Languages

DSAs require targeting of high level operations to the

architecture

® Hard to start with C or Python-like language and recover
structure

® Need matrix, vector, or sparse matrix operations

® Domain Specific Languages specify these operations:
o OpenGL, TensorFlow, P4

e |f DSL programs retain architecture-independence, interesting

compiler challenges will exist
o XLA

‘XLA - TensorFlow, Compiled”, XLA Team, March 6, 2017

35

Experience

Data Plane Errors

- Reading/writing invalid headers ‘

- Unhanded exceptions o

- Incorrect use of packet metadata
- Malformed parsers/deparsers
- Unintended control flows

Header Validity

The P4 Language Specification

Version 1.0.4
May 24, 2017

The P4 Language Consortium

1 Introduction

P4 is a declarative language for expressing how packets are processed by the pipeline
of a network forwarding element such as a switch, NIC, router or network function ap-
pliance. It is based upon an abstract forwarding model consisting of a parser and a set
of match+action table resources, divided between ingress and egress. The parser iden-
tifies the headers present in each incoming packet. Each match+action table performs
alookup on a subset of header fields and applies the actions corresponding to the first
match within each table. Figure 1 shows this model.

P4 itself is protocol independent but allows for the expression of forwarding plane pro-
tocols. A P4 program specifies the following for each forwarding element.

e Header definitions: the format (the set of fields and their sizes) of each header
within a packet.

e Parse graph: the permitted header sequences within packets.

e Tabledefinitions: the type of lookup to perform, the input fields to use, the actions
that may be applied, and the dimensions of each table.

e Action definitions: compound actions composed from a set of primitive actions.

* Pipeline layout and control flow: the layout of tables within the pipeline and the
packet flow through the pipeline.

P4 addresses the configuration of a forwarding element. Once configured, tables may
be populated and packet processing takes place. These post-configuration operations
are referred to as "run time" in this document. This does not preclude updating a for-
warding element’s configuration while it is running.

1.1 The P4 Abstract Model

The following diagram shows a high level representation of the P4 abstract model.

The P4 machine operates with only a few simple rules.

© 2014-2017, The P4 Language Consortium

References at run time to
a header instance (or one
of its fields) which is not
valid results in a special
“undefined” value.

The implications of this
depend on the context.

Example: switch.p4 Parser

The analog of Hoare's "$1B mistake" leads to significant
complications in real-world programs like switch.p4

switch.p4 Validity

Statistics
. /KLoC
- 53 parse states
. 120 match-action tables

Control-Plane Annotations
. /58 LoC
. ~2 days of programmer effort
. Default actions (30)
. Fabric wellformedness (14)
. Table actions (66)
. Guarded reads (10)
. Action data (14)
Bugs
- Parser bugs (2)
. Action flaws (4)
- Infeasible control-plane (3)
- Invalid read (1)

switch.p4 Validity

Statistics
. /KLoC
- 53 parse states
. 120 match-action tables

Control-Plane Annotations
. /58 LoC
~2 days of programmer effort
Default actions (30)
Fabric wellformedness (14)
Table actions (66)
Guarded reads (10)
Action data (14)
Bugs
- Parser bugs (2)
. Action flaws (4)
- Infeasible control-plane (3)
- Invalid read (1)

// For a fabric unicast/multicast packet whose ingressTunnelType is IP-in-IP,
// ipvX and inner_ipvX must be valid.

assume
((fabric_ingress_dst lkp valid fabric_header_unicast == 1 and
fabric_ingress_dst lkp fabric_header_unicast_ingressTunnelType == 3) or
(fabric_ingress_dst_1lkp_valid fabric_header_multicast == 1 and
fabric_ingress_dst lkp fabric_header _multicast _ingressTunnelType == 3))
implies

((fabric_ingress_dst_lkp_valid_ipv4 == 1 or
fabric_ingress_dst_lkp_valid_ipv6 == 1) and
(fabric_ingress_dst_lkp valid _inner_ipv4 == 1 or
fabric_ingress_dst_lkp_valid_inner_ipv6 == 1))

Parser and Deparser Compatbility

In PISA, state is copied verbatim from ingress to egress...

)

A

CAACA A

Parser

Ingress

Traffic

Manager

UL

vrvvey
HEHE

Egress

Deparser

Parser and Deparser Compatbility

In PISA, state is copied verbatim from ingress to egress...

HHEE
HHEE

UL

CAACA A

A
vovuwv

2 2

Parser Ingress Egress Deparser

In reality, the parser and deparser are used to (de)serialize state...

Experiments

Program LOC Time (ms) |
axon 100 313
dapper 618 34691 80%-
easyroute 53 32
flowlet_swit 251 32 0% m s
linear_road 883 /6 W passive
nat 294 50 e
ndn 525 685 B rancae
Daxos 205 41
simple_rout 64 33 20%
switch 7304 15,579
tor 472 76 - L ==
\/pC 278 42 dapper switch switch w/ assumes tlv_parsing overall

Conclusions

- The intersection between networking and formal
methods has gotten very interesting in recent years

- The P4 language offers a unique opportunity to
shape how networks are built for decades to come

- Many challenging problems remain:
-Domain-specific annotation language
- Synthesis of control-plane annotations
-Veritying control-plane annotations

- Usability of tools by non-experts
-Extending to networks of P4 routers

