
Almost Sure
Productivity

Alexandra Silva

joint work with Alejandro Aguirre, Gilles Barthe, and Justin Hsu

arXiV:1802.06283

Productivity
s : R!

Productivity
s : R!

<hd,tl> ⇠=
✏✏

R⇥ R!

Productivity
s : R!

<hd,tl> ⇠=
✏✏

R⇥ R!

every finite part of the infinite structure can be evaluated in
finite time

s : R!

s = 1 : s 1 : 1 : 1 : · · ·

s = 1 : (ones+ s)
ones = 1 : ones

1 : 2 : 3 : 4 : · · ·

s = 0 : zip(inv(even(s)), tail(s))

inv(0 : s) = 1 : inv(s) inv(1 : s) = 0 : inv(s)

even(x : s) = x : odd(s) odd(x : s) = even(s)

zip(1 : s, t) = 1 : zip(t, s)

s = 0 : zip(inv(even(s)), tail(s))

inv(0 : s) = 1 : inv(s) inv(1 : s) = 0 : inv(s)

even(x : s) = x : odd(s) odd(x : s) = even(s)

zip(1 : s, t) = 1 : zip(t, s)

0 : 1 : 1 : 0 : 1 : 0 : 0 : 1 : · · · Thue�Morse Sequence

s = 0 : zip(inv(even(s)), tail(s))

inv(0 : s) = 1 : inv(s) inv(1 : s) = 0 : inv(s)

even(x : s) = x : odd(s) odd(x : s) = even(s)

zip(1 : s, t) = 1 : zip(t, s)

0 : 1 : 1 : 0 : 1 : 0 : 0 : 1 : · · · Thue�Morse Sequence

{0 ! 01, 1 ! 10}

s = 0 : 1 : even(s)
even(x : s) = x : odd(s)
odd(x : s) = even(s)

s = 0 : 1 : even(s)
even(x : s) = x : odd(s)
odd(x : s) = even(s)

0 : 1 : 0 : 0 : even!

Strategies to check for
productivity

• Syntactic restriction - cf Coq conductive format

• Term rewriting - productivity via termination

Probabilistic programs

374:2 Almost Sure Productivity

precise approximations of infinite objects in finite time. Productivity has been studied
extensively for standard, non-probabilistic coinductive languages [20, 16, 1, 13, 8], but the
probabilistic setting introduces new subtleties and challenges.

Contributions

Our first contribution is conceptual. We introduce almost sure productivity (ASP), a
probabilistic counterpart to productivity. A probabilistic stream computation is almost
surely productive if it produces an infinite stream of outputs with probability 1. For instance,
consider the stream defined by the equation

‡ = (a : ‡) üp ‡

Viewed as a program, this stream repeatedly flips a coin with bias p œ (0, 1), producing the
value a if the coin comes up heads and retrying if the coin comes up tails. This computation
is almost surely productive since the probability it fails to produce outputs for n consecutive
steps is (1 ≠ p)n, which tends to zero as n increases. In contrast, consider the stream

‡ = ā üp ‘

This computation flips a single biased coin and returns an infinite stream of a’s if the coin
comes up heads, and the empty stream ‘ if the coin comes up tails. This process is not

almost surely productive since its probability of outputting an infinite stream is only p, which
is strictly less than 1.

We define almost sure productivity for any system that can be equipped with a final
coalgebra semantics in the style of Kerstan and König [22] (Section 3). We instantiate our
semantics on a core probabilistic language for computing over streams and trees (Section 4).
Then, we consider two methods for proving almost sure productivity.
1. We begin with a syntactic method that assigns a real-valued measure to each expression

e (Section 5). Intuitively, the measure represents the expected di�erence between the
number of outputs produced and consumed per evaluation step of the expression. For
instance, the computation that repeatedly flips a fair coin and outputs a value if the coin
is heads has measure 1

2
—with probability 1/2 it produces an output, with probability 0

it produces no outputs. More complex terms in our language can also consume outputs
internally, leading to possibly negative values for the productivity measure.
We show that every expression whose measure is strictly positive is almost surely produc-
tive; the proof of soundness of the method uses concentration results from martingale
theory. While simple to carry out, our syntactic method is incomplete—it does not yield
any information for expressions with non-positive measure.

2. To give a more sophisticated analysis, we reduce the problem of deciding ASP to proba-
bilistic model-checking (Section 6). We translate our programs to probabilistic pushdown
automata and show that almost sure productivity is characterized by a logical formula in
LTL. This fragment is known to be decidable [7], giving a sound and complete procedure
for deciding ASP.

We consider more advanced generalizations and extensions in Section 7, survey related work
in Section 8, and conclude in Section 9.

2 Mathematical Preliminaries

This section reviews basic notation and definitions from measure theory and category theory.
Given a set A we will denote by A‹ the coproduct of A with a one-element set containing a

productive?

Probabilistic programs

374:2 Almost Sure Productivity

precise approximations of infinite objects in finite time. Productivity has been studied
extensively for standard, non-probabilistic coinductive languages [20, 16, 1, 13, 8], but the
probabilistic setting introduces new subtleties and challenges.

Contributions

Our first contribution is conceptual. We introduce almost sure productivity (ASP), a
probabilistic counterpart to productivity. A probabilistic stream computation is almost
surely productive if it produces an infinite stream of outputs with probability 1. For instance,
consider the stream defined by the equation

‡ = (a : ‡) üp ‡

Viewed as a program, this stream repeatedly flips a coin with bias p œ (0, 1), producing the
value a if the coin comes up heads and retrying if the coin comes up tails. This computation
is almost surely productive since the probability it fails to produce outputs for n consecutive
steps is (1 ≠ p)n, which tends to zero as n increases. In contrast, consider the stream

‡ = ā üp ‘

This computation flips a single biased coin and returns an infinite stream of a’s if the coin
comes up heads, and the empty stream ‘ if the coin comes up tails. This process is not

almost surely productive since its probability of outputting an infinite stream is only p, which
is strictly less than 1.

We define almost sure productivity for any system that can be equipped with a final
coalgebra semantics in the style of Kerstan and König [22] (Section 3). We instantiate our
semantics on a core probabilistic language for computing over streams and trees (Section 4).
Then, we consider two methods for proving almost sure productivity.
1. We begin with a syntactic method that assigns a real-valued measure to each expression

e (Section 5). Intuitively, the measure represents the expected di�erence between the
number of outputs produced and consumed per evaluation step of the expression. For
instance, the computation that repeatedly flips a fair coin and outputs a value if the coin
is heads has measure 1

2
—with probability 1/2 it produces an output, with probability 0

it produces no outputs. More complex terms in our language can also consume outputs
internally, leading to possibly negative values for the productivity measure.
We show that every expression whose measure is strictly positive is almost surely produc-
tive; the proof of soundness of the method uses concentration results from martingale
theory. While simple to carry out, our syntactic method is incomplete—it does not yield
any information for expressions with non-positive measure.

2. To give a more sophisticated analysis, we reduce the problem of deciding ASP to proba-
bilistic model-checking (Section 6). We translate our programs to probabilistic pushdown
automata and show that almost sure productivity is characterized by a logical formula in
LTL. This fragment is known to be decidable [7], giving a sound and complete procedure
for deciding ASP.

We consider more advanced generalizations and extensions in Section 7, survey related work
in Section 8, and conclude in Section 9.

2 Mathematical Preliminaries

This section reviews basic notation and definitions from measure theory and category theory.
Given a set A we will denote by A‹ the coproduct of A with a one-element set containing a

productive?

A probabilistic stream computation is almost surely
productive (ASP) if it produces an infinite stream of
outputs with probability 1.

Probabilistic programs

374:2 Almost Sure Productivity

precise approximations of infinite objects in finite time. Productivity has been studied
extensively for standard, non-probabilistic coinductive languages [20, 16, 1, 13, 8], but the
probabilistic setting introduces new subtleties and challenges.

Contributions

Our first contribution is conceptual. We introduce almost sure productivity (ASP), a
probabilistic counterpart to productivity. A probabilistic stream computation is almost
surely productive if it produces an infinite stream of outputs with probability 1. For instance,
consider the stream defined by the equation

‡ = (a : ‡) üp ‡

Viewed as a program, this stream repeatedly flips a coin with bias p œ (0, 1), producing the
value a if the coin comes up heads and retrying if the coin comes up tails. This computation
is almost surely productive since the probability it fails to produce outputs for n consecutive
steps is (1 ≠ p)n, which tends to zero as n increases. In contrast, consider the stream

‡ = ā üp ‘

This computation flips a single biased coin and returns an infinite stream of a’s if the coin
comes up heads, and the empty stream ‘ if the coin comes up tails. This process is not

almost surely productive since its probability of outputting an infinite stream is only p, which
is strictly less than 1.

We define almost sure productivity for any system that can be equipped with a final
coalgebra semantics in the style of Kerstan and König [22] (Section 3). We instantiate our
semantics on a core probabilistic language for computing over streams and trees (Section 4).
Then, we consider two methods for proving almost sure productivity.
1. We begin with a syntactic method that assigns a real-valued measure to each expression

e (Section 5). Intuitively, the measure represents the expected di�erence between the
number of outputs produced and consumed per evaluation step of the expression. For
instance, the computation that repeatedly flips a fair coin and outputs a value if the coin
is heads has measure 1

2
—with probability 1/2 it produces an output, with probability 0

it produces no outputs. More complex terms in our language can also consume outputs
internally, leading to possibly negative values for the productivity measure.
We show that every expression whose measure is strictly positive is almost surely produc-
tive; the proof of soundness of the method uses concentration results from martingale
theory. While simple to carry out, our syntactic method is incomplete—it does not yield
any information for expressions with non-positive measure.

2. To give a more sophisticated analysis, we reduce the problem of deciding ASP to proba-
bilistic model-checking (Section 6). We translate our programs to probabilistic pushdown
automata and show that almost sure productivity is characterized by a logical formula in
LTL. This fragment is known to be decidable [7], giving a sound and complete procedure
for deciding ASP.

We consider more advanced generalizations and extensions in Section 7, survey related work
in Section 8, and conclude in Section 9.

2 Mathematical Preliminaries

This section reviews basic notation and definitions from measure theory and category theory.
Given a set A we will denote by A‹ the coproduct of A with a one-element set containing a

A probabilistic stream computation is almost surely
productive (ASP) if it produces an infinite stream of
outputs with probability 1.

374:2 Almost Sure Productivity

precise approximations of infinite objects in finite time. Productivity has been studied
extensively for standard, non-probabilistic coinductive languages [20, 16, 1, 13, 8], but the
probabilistic setting introduces new subtleties and challenges.

Contributions

Our first contribution is conceptual. We introduce almost sure productivity (ASP), a
probabilistic counterpart to productivity. A probabilistic stream computation is almost
surely productive if it produces an infinite stream of outputs with probability 1. For instance,
consider the stream defined by the equation

‡ = (a : ‡) üp ‡

Viewed as a program, this stream repeatedly flips a coin with bias p œ (0, 1), producing the
value a if the coin comes up heads and retrying if the coin comes up tails. This computation
is almost surely productive since the probability it fails to produce outputs for n consecutive
steps is (1 ≠ p)n, which tends to zero as n increases. In contrast, consider the stream

‡ = ā üp ‘

This computation flips a single biased coin and returns an infinite stream of a’s if the coin
comes up heads, and the empty stream ‘ if the coin comes up tails. This process is not

almost surely productive since its probability of outputting an infinite stream is only p, which
is strictly less than 1.

We define almost sure productivity for any system that can be equipped with a final
coalgebra semantics in the style of Kerstan and König [22] (Section 3). We instantiate our
semantics on a core probabilistic language for computing over streams and trees (Section 4).
Then, we consider two methods for proving almost sure productivity.
1. We begin with a syntactic method that assigns a real-valued measure to each expression

e (Section 5). Intuitively, the measure represents the expected di�erence between the
number of outputs produced and consumed per evaluation step of the expression. For
instance, the computation that repeatedly flips a fair coin and outputs a value if the coin
is heads has measure 1

2
—with probability 1/2 it produces an output, with probability 0

it produces no outputs. More complex terms in our language can also consume outputs
internally, leading to possibly negative values for the productivity measure.
We show that every expression whose measure is strictly positive is almost surely produc-
tive; the proof of soundness of the method uses concentration results from martingale
theory. While simple to carry out, our syntactic method is incomplete—it does not yield
any information for expressions with non-positive measure.

2. To give a more sophisticated analysis, we reduce the problem of deciding ASP to proba-
bilistic model-checking (Section 6). We translate our programs to probabilistic pushdown
automata and show that almost sure productivity is characterized by a logical formula in
LTL. This fragment is known to be decidable [7], giving a sound and complete procedure
for deciding ASP.

We consider more advanced generalizations and extensions in Section 7, survey related work
in Section 8, and conclude in Section 9.

2 Mathematical Preliminaries

This section reviews basic notation and definitions from measure theory and category theory.
Given a set A we will denote by A‹ the coproduct of A with a one-element set containing a

Prob of no output =

Probabilistic programs

374:2 Almost Sure Productivity

precise approximations of infinite objects in finite time. Productivity has been studied
extensively for standard, non-probabilistic coinductive languages [20, 16, 1, 13, 8], but the
probabilistic setting introduces new subtleties and challenges.

Contributions

Our first contribution is conceptual. We introduce almost sure productivity (ASP), a
probabilistic counterpart to productivity. A probabilistic stream computation is almost
surely productive if it produces an infinite stream of outputs with probability 1. For instance,
consider the stream defined by the equation

‡ = (a : ‡) üp ‡

Viewed as a program, this stream repeatedly flips a coin with bias p œ (0, 1), producing the
value a if the coin comes up heads and retrying if the coin comes up tails. This computation
is almost surely productive since the probability it fails to produce outputs for n consecutive
steps is (1 ≠ p)n, which tends to zero as n increases. In contrast, consider the stream

‡ = ā üp ‘

This computation flips a single biased coin and returns an infinite stream of a’s if the coin
comes up heads, and the empty stream ‘ if the coin comes up tails. This process is not

almost surely productive since its probability of outputting an infinite stream is only p, which
is strictly less than 1.

We define almost sure productivity for any system that can be equipped with a final
coalgebra semantics in the style of Kerstan and König [22] (Section 3). We instantiate our
semantics on a core probabilistic language for computing over streams and trees (Section 4).
Then, we consider two methods for proving almost sure productivity.
1. We begin with a syntactic method that assigns a real-valued measure to each expression

e (Section 5). Intuitively, the measure represents the expected di�erence between the
number of outputs produced and consumed per evaluation step of the expression. For
instance, the computation that repeatedly flips a fair coin and outputs a value if the coin
is heads has measure 1

2
—with probability 1/2 it produces an output, with probability 0

it produces no outputs. More complex terms in our language can also consume outputs
internally, leading to possibly negative values for the productivity measure.
We show that every expression whose measure is strictly positive is almost surely produc-
tive; the proof of soundness of the method uses concentration results from martingale
theory. While simple to carry out, our syntactic method is incomplete—it does not yield
any information for expressions with non-positive measure.

2. To give a more sophisticated analysis, we reduce the problem of deciding ASP to proba-
bilistic model-checking (Section 6). We translate our programs to probabilistic pushdown
automata and show that almost sure productivity is characterized by a logical formula in
LTL. This fragment is known to be decidable [7], giving a sound and complete procedure
for deciding ASP.

We consider more advanced generalizations and extensions in Section 7, survey related work
in Section 8, and conclude in Section 9.

2 Mathematical Preliminaries

This section reviews basic notation and definitions from measure theory and category theory.
Given a set A we will denote by A‹ the coproduct of A with a one-element set containing a

A probabilistic stream computation is almost surely
productive (ASP) if it produces an infinite stream of
outputs with probability 1.

374:2 Almost Sure Productivity

precise approximations of infinite objects in finite time. Productivity has been studied
extensively for standard, non-probabilistic coinductive languages [20, 16, 1, 13, 8], but the
probabilistic setting introduces new subtleties and challenges.

Contributions

Our first contribution is conceptual. We introduce almost sure productivity (ASP), a
probabilistic counterpart to productivity. A probabilistic stream computation is almost
surely productive if it produces an infinite stream of outputs with probability 1. For instance,
consider the stream defined by the equation

‡ = (a : ‡) üp ‡

Viewed as a program, this stream repeatedly flips a coin with bias p œ (0, 1), producing the
value a if the coin comes up heads and retrying if the coin comes up tails. This computation
is almost surely productive since the probability it fails to produce outputs for n consecutive
steps is (1 ≠ p)n, which tends to zero as n increases. In contrast, consider the stream

‡ = ā üp ‘

This computation flips a single biased coin and returns an infinite stream of a’s if the coin
comes up heads, and the empty stream ‘ if the coin comes up tails. This process is not

almost surely productive since its probability of outputting an infinite stream is only p, which
is strictly less than 1.

We define almost sure productivity for any system that can be equipped with a final
coalgebra semantics in the style of Kerstan and König [22] (Section 3). We instantiate our
semantics on a core probabilistic language for computing over streams and trees (Section 4).
Then, we consider two methods for proving almost sure productivity.
1. We begin with a syntactic method that assigns a real-valued measure to each expression

e (Section 5). Intuitively, the measure represents the expected di�erence between the
number of outputs produced and consumed per evaluation step of the expression. For
instance, the computation that repeatedly flips a fair coin and outputs a value if the coin
is heads has measure 1

2
—with probability 1/2 it produces an output, with probability 0

it produces no outputs. More complex terms in our language can also consume outputs
internally, leading to possibly negative values for the productivity measure.
We show that every expression whose measure is strictly positive is almost surely produc-
tive; the proof of soundness of the method uses concentration results from martingale
theory. While simple to carry out, our syntactic method is incomplete—it does not yield
any information for expressions with non-positive measure.

2. To give a more sophisticated analysis, we reduce the problem of deciding ASP to proba-
bilistic model-checking (Section 6). We translate our programs to probabilistic pushdown
automata and show that almost sure productivity is characterized by a logical formula in
LTL. This fragment is known to be decidable [7], giving a sound and complete procedure
for deciding ASP.

We consider more advanced generalizations and extensions in Section 7, survey related work
in Section 8, and conclude in Section 9.

2 Mathematical Preliminaries

This section reviews basic notation and definitions from measure theory and category theory.
Given a set A we will denote by A‹ the coproduct of A with a one-element set containing a

Prob of no output =

ASP X

Probabilistic programs

374:2 Almost Sure Productivity

precise approximations of infinite objects in finite time. Productivity has been studied
extensively for standard, non-probabilistic coinductive languages [20, 16, 1, 13, 8], but the
probabilistic setting introduces new subtleties and challenges.

Contributions

Our first contribution is conceptual. We introduce almost sure productivity (ASP), a
probabilistic counterpart to productivity. A probabilistic stream computation is almost
surely productive if it produces an infinite stream of outputs with probability 1. For instance,
consider the stream defined by the equation

‡ = (a : ‡) üp ‡

Viewed as a program, this stream repeatedly flips a coin with bias p œ (0, 1), producing the
value a if the coin comes up heads and retrying if the coin comes up tails. This computation
is almost surely productive since the probability it fails to produce outputs for n consecutive
steps is (1 ≠ p)n, which tends to zero as n increases. In contrast, consider the stream

‡ = ā üp ‘

This computation flips a single biased coin and returns an infinite stream of a’s if the coin
comes up heads, and the empty stream ‘ if the coin comes up tails. This process is not

almost surely productive since its probability of outputting an infinite stream is only p, which
is strictly less than 1.

We define almost sure productivity for any system that can be equipped with a final
coalgebra semantics in the style of Kerstan and König [22] (Section 3). We instantiate our
semantics on a core probabilistic language for computing over streams and trees (Section 4).
Then, we consider two methods for proving almost sure productivity.
1. We begin with a syntactic method that assigns a real-valued measure to each expression

e (Section 5). Intuitively, the measure represents the expected di�erence between the
number of outputs produced and consumed per evaluation step of the expression. For
instance, the computation that repeatedly flips a fair coin and outputs a value if the coin
is heads has measure 1

2
—with probability 1/2 it produces an output, with probability 0

it produces no outputs. More complex terms in our language can also consume outputs
internally, leading to possibly negative values for the productivity measure.
We show that every expression whose measure is strictly positive is almost surely produc-
tive; the proof of soundness of the method uses concentration results from martingale
theory. While simple to carry out, our syntactic method is incomplete—it does not yield
any information for expressions with non-positive measure.

2. To give a more sophisticated analysis, we reduce the problem of deciding ASP to proba-
bilistic model-checking (Section 6). We translate our programs to probabilistic pushdown
automata and show that almost sure productivity is characterized by a logical formula in
LTL. This fragment is known to be decidable [7], giving a sound and complete procedure
for deciding ASP.

We consider more advanced generalizations and extensions in Section 7, survey related work
in Section 8, and conclude in Section 9.

2 Mathematical Preliminaries

This section reviews basic notation and definitions from measure theory and category theory.
Given a set A we will denote by A‹ the coproduct of A with a one-element set containing a

ā = a : a : a : a : · · ·

Probabilistic programs

374:2 Almost Sure Productivity

precise approximations of infinite objects in finite time. Productivity has been studied
extensively for standard, non-probabilistic coinductive languages [20, 16, 1, 13, 8], but the
probabilistic setting introduces new subtleties and challenges.

Contributions

Our first contribution is conceptual. We introduce almost sure productivity (ASP), a
probabilistic counterpart to productivity. A probabilistic stream computation is almost
surely productive if it produces an infinite stream of outputs with probability 1. For instance,
consider the stream defined by the equation

‡ = (a : ‡) üp ‡

Viewed as a program, this stream repeatedly flips a coin with bias p œ (0, 1), producing the
value a if the coin comes up heads and retrying if the coin comes up tails. This computation
is almost surely productive since the probability it fails to produce outputs for n consecutive
steps is (1 ≠ p)n, which tends to zero as n increases. In contrast, consider the stream

‡ = ā üp ‘

This computation flips a single biased coin and returns an infinite stream of a’s if the coin
comes up heads, and the empty stream ‘ if the coin comes up tails. This process is not

almost surely productive since its probability of outputting an infinite stream is only p, which
is strictly less than 1.

We define almost sure productivity for any system that can be equipped with a final
coalgebra semantics in the style of Kerstan and König [22] (Section 3). We instantiate our
semantics on a core probabilistic language for computing over streams and trees (Section 4).
Then, we consider two methods for proving almost sure productivity.
1. We begin with a syntactic method that assigns a real-valued measure to each expression

e (Section 5). Intuitively, the measure represents the expected di�erence between the
number of outputs produced and consumed per evaluation step of the expression. For
instance, the computation that repeatedly flips a fair coin and outputs a value if the coin
is heads has measure 1

2
—with probability 1/2 it produces an output, with probability 0

it produces no outputs. More complex terms in our language can also consume outputs
internally, leading to possibly negative values for the productivity measure.
We show that every expression whose measure is strictly positive is almost surely produc-
tive; the proof of soundness of the method uses concentration results from martingale
theory. While simple to carry out, our syntactic method is incomplete—it does not yield
any information for expressions with non-positive measure.

2. To give a more sophisticated analysis, we reduce the problem of deciding ASP to proba-
bilistic model-checking (Section 6). We translate our programs to probabilistic pushdown
automata and show that almost sure productivity is characterized by a logical formula in
LTL. This fragment is known to be decidable [7], giving a sound and complete procedure
for deciding ASP.

We consider more advanced generalizations and extensions in Section 7, survey related work
in Section 8, and conclude in Section 9.

2 Mathematical Preliminaries

This section reviews basic notation and definitions from measure theory and category theory.
Given a set A we will denote by A‹ the coproduct of A with a one-element set containing a

ā = a : a : a : a : · · ·

ASP

Probabilistic programs

374:2 Almost Sure Productivity

precise approximations of infinite objects in finite time. Productivity has been studied
extensively for standard, non-probabilistic coinductive languages [20, 16, 1, 13, 8], but the
probabilistic setting introduces new subtleties and challenges.

Contributions

Our first contribution is conceptual. We introduce almost sure productivity (ASP), a
probabilistic counterpart to productivity. A probabilistic stream computation is almost
surely productive if it produces an infinite stream of outputs with probability 1. For instance,
consider the stream defined by the equation

‡ = (a : ‡) üp ‡

Viewed as a program, this stream repeatedly flips a coin with bias p œ (0, 1), producing the
value a if the coin comes up heads and retrying if the coin comes up tails. This computation
is almost surely productive since the probability it fails to produce outputs for n consecutive
steps is (1 ≠ p)n, which tends to zero as n increases. In contrast, consider the stream

‡ = ā üp ‘

This computation flips a single biased coin and returns an infinite stream of a’s if the coin
comes up heads, and the empty stream ‘ if the coin comes up tails. This process is not

almost surely productive since its probability of outputting an infinite stream is only p, which
is strictly less than 1.

We define almost sure productivity for any system that can be equipped with a final
coalgebra semantics in the style of Kerstan and König [22] (Section 3). We instantiate our
semantics on a core probabilistic language for computing over streams and trees (Section 4).
Then, we consider two methods for proving almost sure productivity.
1. We begin with a syntactic method that assigns a real-valued measure to each expression

e (Section 5). Intuitively, the measure represents the expected di�erence between the
number of outputs produced and consumed per evaluation step of the expression. For
instance, the computation that repeatedly flips a fair coin and outputs a value if the coin
is heads has measure 1

2
—with probability 1/2 it produces an output, with probability 0

it produces no outputs. More complex terms in our language can also consume outputs
internally, leading to possibly negative values for the productivity measure.
We show that every expression whose measure is strictly positive is almost surely produc-
tive; the proof of soundness of the method uses concentration results from martingale
theory. While simple to carry out, our syntactic method is incomplete—it does not yield
any information for expressions with non-positive measure.

2. To give a more sophisticated analysis, we reduce the problem of deciding ASP to proba-
bilistic model-checking (Section 6). We translate our programs to probabilistic pushdown
automata and show that almost sure productivity is characterized by a logical formula in
LTL. This fragment is known to be decidable [7], giving a sound and complete procedure
for deciding ASP.

We consider more advanced generalizations and extensions in Section 7, survey related work
in Section 8, and conclude in Section 9.

2 Mathematical Preliminaries

This section reviews basic notation and definitions from measure theory and category theory.
Given a set A we will denote by A‹ the coproduct of A with a one-element set containing a

ā = a : a : a : a : · · ·

A. Aguirre, G. Barthe, J. Hsu, A. Silva 374:5

I Example 3. Let us consider the following program defining a stream ‡ recursively, in
which each recursion step is determined by a coin flip with bias p:

‡ = (a : ‡) üp tail(‡)

In the next section we will formally introduce this programming language, but intuitively
the program repeatedly flips a coin. If the coin flip results in heads the program produces an
element a. Otherwise the program tries to compute the tail of the recursive call; the first
element produced by the recursive call is dropped (consumed), while subsequent elements
produced (if any) are emitted as output.

To analyze the productivity behavior of this probabilistic program, we can reason intu-
itively. Each time the second branch is chosen, the program must choose the first branch
strictly more than once in order to produce one output (since, e.g., tail(a : ‡) = ‡). Accord-
ingly, the productivity behavior of this program depends on the value of p. When p is less
than 1/2, the program chooses the first branch less often than the second branch and the
program is not ASP. On the other hand, when p > 1/2 the program will tend to produce
more elements a than are consumed by the destructors, and the above program is ASP. In
the sequel, we will show two methods to formally prove this fact.

It will be convenient to represent the functor as F (X) = A‹ ◊ X as A ◊ X + X. In the
rest of this paper we will often use the latter representation and refer to the final coalgebra

as observation streams OS = (A‹)Ê with structure OS A ◊ OS + OS<out,unf>

≥=
oo given by

out(a, ‡) = a : ‡ and unf(‡) = ‹ : ‡.
Streams are not the only coinductively defined data; infinite binary trees are another

classical example. To generate trees, we can imagine that a program produces an output
value—labeling the root node—and two child programs, which then generate the left and
right child of a tree of outputs. Much like we saw for streams, probabilistic programs
generating these trees may sometimes step to a single new program without producing
outputs. Accordingly we will work with the functor F (X) = A ◊ X ◊ X + X, where the left
summand can be thought of as the result of an output step, while the right summand gives
the result of a non-output step.

I Theorem 4 (Finality for trees). Given a set of programs T endowed with a probabilistic

step function st : T æ D(A ◊ T ◊ T + T), there is a unique semantics function J≠K assigning

to each program a probability distribution of output trees such that the following diagram

commutes in the Kleisli category K¸(D).

T ¶
J≠K //

¶st

✏✏

Trees(A‹)

¶<out,unf>≠1

✏✏
A ◊ T ◊ T + T ¶

id◊J≠K◊J≠K+J≠K // A ◊ Trees(A‹) ◊ Trees(A‹) + Trees(A‹)

Trees(A‹) are infinite trees where the nodes are either elements of A or ‹. An a-node has
two children whereas a ‹-node only has one child. Formally, we can construct these trees
with the two maps out and unf:

unf(
‡

) =

‹

‡
out(a,

‡
,

·) =

a

‡ ·

ICALP 2018

ASP

Probabilistic programs

374:2 Almost Sure Productivity

precise approximations of infinite objects in finite time. Productivity has been studied
extensively for standard, non-probabilistic coinductive languages [20, 16, 1, 13, 8], but the
probabilistic setting introduces new subtleties and challenges.

Contributions

Our first contribution is conceptual. We introduce almost sure productivity (ASP), a
probabilistic counterpart to productivity. A probabilistic stream computation is almost
surely productive if it produces an infinite stream of outputs with probability 1. For instance,
consider the stream defined by the equation

‡ = (a : ‡) üp ‡

Viewed as a program, this stream repeatedly flips a coin with bias p œ (0, 1), producing the
value a if the coin comes up heads and retrying if the coin comes up tails. This computation
is almost surely productive since the probability it fails to produce outputs for n consecutive
steps is (1 ≠ p)n, which tends to zero as n increases. In contrast, consider the stream

‡ = ā üp ‘

This computation flips a single biased coin and returns an infinite stream of a’s if the coin
comes up heads, and the empty stream ‘ if the coin comes up tails. This process is not

almost surely productive since its probability of outputting an infinite stream is only p, which
is strictly less than 1.

We define almost sure productivity for any system that can be equipped with a final
coalgebra semantics in the style of Kerstan and König [22] (Section 3). We instantiate our
semantics on a core probabilistic language for computing over streams and trees (Section 4).
Then, we consider two methods for proving almost sure productivity.
1. We begin with a syntactic method that assigns a real-valued measure to each expression

e (Section 5). Intuitively, the measure represents the expected di�erence between the
number of outputs produced and consumed per evaluation step of the expression. For
instance, the computation that repeatedly flips a fair coin and outputs a value if the coin
is heads has measure 1

2
—with probability 1/2 it produces an output, with probability 0

it produces no outputs. More complex terms in our language can also consume outputs
internally, leading to possibly negative values for the productivity measure.
We show that every expression whose measure is strictly positive is almost surely produc-
tive; the proof of soundness of the method uses concentration results from martingale
theory. While simple to carry out, our syntactic method is incomplete—it does not yield
any information for expressions with non-positive measure.

2. To give a more sophisticated analysis, we reduce the problem of deciding ASP to proba-
bilistic model-checking (Section 6). We translate our programs to probabilistic pushdown
automata and show that almost sure productivity is characterized by a logical formula in
LTL. This fragment is known to be decidable [7], giving a sound and complete procedure
for deciding ASP.

We consider more advanced generalizations and extensions in Section 7, survey related work
in Section 8, and conclude in Section 9.

2 Mathematical Preliminaries

This section reviews basic notation and definitions from measure theory and category theory.
Given a set A we will denote by A‹ the coproduct of A with a one-element set containing a

ā = a : a : a : a : · · ·

A. Aguirre, G. Barthe, J. Hsu, A. Silva 374:5

I Example 3. Let us consider the following program defining a stream ‡ recursively, in
which each recursion step is determined by a coin flip with bias p:

‡ = (a : ‡) üp tail(‡)

In the next section we will formally introduce this programming language, but intuitively
the program repeatedly flips a coin. If the coin flip results in heads the program produces an
element a. Otherwise the program tries to compute the tail of the recursive call; the first
element produced by the recursive call is dropped (consumed), while subsequent elements
produced (if any) are emitted as output.

To analyze the productivity behavior of this probabilistic program, we can reason intu-
itively. Each time the second branch is chosen, the program must choose the first branch
strictly more than once in order to produce one output (since, e.g., tail(a : ‡) = ‡). Accord-
ingly, the productivity behavior of this program depends on the value of p. When p is less
than 1/2, the program chooses the first branch less often than the second branch and the
program is not ASP. On the other hand, when p > 1/2 the program will tend to produce
more elements a than are consumed by the destructors, and the above program is ASP. In
the sequel, we will show two methods to formally prove this fact.

It will be convenient to represent the functor as F (X) = A‹ ◊ X as A ◊ X + X. In the
rest of this paper we will often use the latter representation and refer to the final coalgebra

as observation streams OS = (A‹)Ê with structure OS A ◊ OS + OS<out,unf>

≥=
oo given by

out(a, ‡) = a : ‡ and unf(‡) = ‹ : ‡.
Streams are not the only coinductively defined data; infinite binary trees are another

classical example. To generate trees, we can imagine that a program produces an output
value—labeling the root node—and two child programs, which then generate the left and
right child of a tree of outputs. Much like we saw for streams, probabilistic programs
generating these trees may sometimes step to a single new program without producing
outputs. Accordingly we will work with the functor F (X) = A ◊ X ◊ X + X, where the left
summand can be thought of as the result of an output step, while the right summand gives
the result of a non-output step.

I Theorem 4 (Finality for trees). Given a set of programs T endowed with a probabilistic

step function st : T æ D(A ◊ T ◊ T + T), there is a unique semantics function J≠K assigning

to each program a probability distribution of output trees such that the following diagram

commutes in the Kleisli category K¸(D).

T ¶
J≠K //

¶st

✏✏

Trees(A‹)

¶<out,unf>≠1

✏✏
A ◊ T ◊ T + T ¶

id◊J≠K◊J≠K+J≠K // A ◊ Trees(A‹) ◊ Trees(A‹) + Trees(A‹)

Trees(A‹) are infinite trees where the nodes are either elements of A or ‹. An a-node has
two children whereas a ‹-node only has one child. Formally, we can construct these trees
with the two maps out and unf:

unf(
‡

) =

‹

‡
out(a,

‡
,

·) =

a

‡ ·

ICALP 2018

ASP X

ASP

p 1/2

p > 1/2 ASP

Almost surely productivity

• Formal definition that is language oblivious

• Can be generalised for different conductive types
— streams, trees, etc

• Methods to verify ASP

Formal definition
A probabilistic stream computation is almost surely
productive (ASP) if it produces an infinite stream of
outputs with probability 1.

374:4 Almost Sure Productivity

Given measurable spaces (X, �X) and (Y, �Y), a Markov kernel is a function P : X ◊ �Y æ

[0, 1] (equivalently, X æ �Y æ [0, 1]) that maps each source state x œ X to a distribution
over target states P (x, ≠) : �Y æ [0, 1].

Markov kernels form the arrows in the Kleisli category K¸(D) of the D monad; we denote
such arrows by X ¶P // Y . Composition in the Kleisli category is given by integration:

X ¶P // Y ¶
Q // Z (P ¶ Q)(x, A) =

⁄

yœY
P (x, dy) · Q(y, A)

Associativity of composition is essentially Fubini’s theorem.

3 Defining Almost Sure Productivity

We will consider programs that denote probability distributions over coinductive types, such
as infinite streams or trees. In this section, we focus on the definitions for programs producing
streams and binary trees for simplicity, but our results should extend to arbitrary polynomial
functors (see Section 7).

First, we introduce the semantics of programs. Rather than fix a concrete program-
ming language at this point, we let T denote an abstract state space (e.g., the terms of
a programming language or the space of program memories). The state evolves over an
infinite sequence of discrete time steps. At each step, we will probabilistic observe either
a concrete output (a œ A) or nothing (‹), along with a resulting state. Intuitively, p œ T
is ASP if its probability of producing unboundedly many outputs is 1. Formally, we give
states in T a denotational semantics J≠K : T æ D((A‹)Ê) defined coinductively, starting
from a given one-step semantics function that maps each term to an output in A‹ and the
resulting term. Since the step function is probabilistic, we work in the Kleisli category for the
distribution monad; this introduces some complications when computing the final coalgebras
in this category. We take the work on probabilistic streams by Kerstan and König [22] as
our starting point, and then generalize to probabilistic trees.

I Theorem 1 (Finality for streams [22]). Given a set T of programs endowed with a probabilistic

step function st : T æ D(A‹ ◊ T), there is a unique semantics function J≠K assigning to

each program a probability distribution of output streams such that the following diagram

commutes in the Kleisli category K¸(D):

T ¶
J≠K //

¶st

✏✏

(A‹)Ê

¶<head,tail>

✏✏
A‹ ◊ T ¶

id◊J≠K // A‹ ◊ (A‹)Ê

I Definition 2 (ASP for streams). A stream program p œ T is almost surely productive (ASP)
if

Pr
‡≥JpK

[‡ has infinitely many concrete output elements a œ A] = 1.

For this to be a sensible definition, the event “‡ has infinitely many concrete output
elements a œ A” must be a measurable set in some ‡-algebra on (A‹)Ê. Following Kerstan
and König, we take the ‡-algebra generated by cones, sets of the form uA

Ê = {v œ

(A‹)Ê
| u prefix of v, u œ (A‹)ú

}. Our definition evidently depends on the definition of
J≠K : T æ D(A‹)Ê; our coinductively defined semantics will be useful later for showing
soundness when verifying ASP, but our definition of ASP is sensible for any semantics J≠K.

?
discrete time

a a? aa · · ·

Formal definition
A probabilistic stream computation is almost surely
productive (ASP) if it produces an infinite stream of
outputs with probability 1.

374:4 Almost Sure Productivity

Given measurable spaces (X, �X) and (Y, �Y), a Markov kernel is a function P : X ◊ �Y æ

[0, 1] (equivalently, X æ �Y æ [0, 1]) that maps each source state x œ X to a distribution
over target states P (x, ≠) : �Y æ [0, 1].

Markov kernels form the arrows in the Kleisli category K¸(D) of the D monad; we denote
such arrows by X ¶P // Y . Composition in the Kleisli category is given by integration:

X ¶P // Y ¶
Q // Z (P ¶ Q)(x, A) =

⁄

yœY
P (x, dy) · Q(y, A)

Associativity of composition is essentially Fubini’s theorem.

3 Defining Almost Sure Productivity

We will consider programs that denote probability distributions over coinductive types, such
as infinite streams or trees. In this section, we focus on the definitions for programs producing
streams and binary trees for simplicity, but our results should extend to arbitrary polynomial
functors (see Section 7).

First, we introduce the semantics of programs. Rather than fix a concrete program-
ming language at this point, we let T denote an abstract state space (e.g., the terms of
a programming language or the space of program memories). The state evolves over an
infinite sequence of discrete time steps. At each step, we will probabilistic observe either
a concrete output (a œ A) or nothing (‹), along with a resulting state. Intuitively, p œ T
is ASP if its probability of producing unboundedly many outputs is 1. Formally, we give
states in T a denotational semantics J≠K : T æ D((A‹)Ê) defined coinductively, starting
from a given one-step semantics function that maps each term to an output in A‹ and the
resulting term. Since the step function is probabilistic, we work in the Kleisli category for the
distribution monad; this introduces some complications when computing the final coalgebras
in this category. We take the work on probabilistic streams by Kerstan and König [22] as
our starting point, and then generalize to probabilistic trees.

I Theorem 1 (Finality for streams [22]). Given a set T of programs endowed with a probabilistic

step function st : T æ D(A‹ ◊ T), there is a unique semantics function J≠K assigning to

each program a probability distribution of output streams such that the following diagram

commutes in the Kleisli category K¸(D):

T ¶
J≠K //

¶st

✏✏

(A‹)Ê

¶<head,tail>

✏✏
A‹ ◊ T ¶

id◊J≠K // A‹ ◊ (A‹)Ê

I Definition 2 (ASP for streams). A stream program p œ T is almost surely productive (ASP)
if

Pr
‡≥JpK

[‡ has infinitely many concrete output elements a œ A] = 1.

For this to be a sensible definition, the event “‡ has infinitely many concrete output
elements a œ A” must be a measurable set in some ‡-algebra on (A‹)Ê. Following Kerstan
and König, we take the ‡-algebra generated by cones, sets of the form uA

Ê = {v œ

(A‹)Ê
| u prefix of v, u œ (A‹)ú

}. Our definition evidently depends on the definition of
J≠K : T æ D(A‹)Ê; our coinductively defined semantics will be useful later for showing
soundness when verifying ASP, but our definition of ASP is sensible for any semantics J≠K.

374:4 Almost Sure Productivity

Given measurable spaces (X, �X) and (Y, �Y), a Markov kernel is a function P : X ◊ �Y æ

[0, 1] (equivalently, X æ �Y æ [0, 1]) that maps each source state x œ X to a distribution
over target states P (x, ≠) : �Y æ [0, 1].

Markov kernels form the arrows in the Kleisli category K¸(D) of the D monad; we denote
such arrows by X ¶P // Y . Composition in the Kleisli category is given by integration:

X ¶P // Y ¶
Q // Z (P ¶ Q)(x, A) =

⁄

yœY
P (x, dy) · Q(y, A)

Associativity of composition is essentially Fubini’s theorem.

3 Defining Almost Sure Productivity

We will consider programs that denote probability distributions over coinductive types, such
as infinite streams or trees. In this section, we focus on the definitions for programs producing
streams and binary trees for simplicity, but our results should extend to arbitrary polynomial
functors (see Section 7).

First, we introduce the semantics of programs. Rather than fix a concrete program-
ming language at this point, we let T denote an abstract state space (e.g., the terms of
a programming language or the space of program memories). The state evolves over an
infinite sequence of discrete time steps. At each step, we will probabilistic observe either
a concrete output (a œ A) or nothing (‹), along with a resulting state. Intuitively, p œ T
is ASP if its probability of producing unboundedly many outputs is 1. Formally, we give
states in T a denotational semantics J≠K : T æ D((A‹)Ê) defined coinductively, starting
from a given one-step semantics function that maps each term to an output in A‹ and the
resulting term. Since the step function is probabilistic, we work in the Kleisli category for the
distribution monad; this introduces some complications when computing the final coalgebras
in this category. We take the work on probabilistic streams by Kerstan and König [22] as
our starting point, and then generalize to probabilistic trees.

I Theorem 1 (Finality for streams [22]). Given a set T of programs endowed with a probabilistic

step function st : T æ D(A‹ ◊ T), there is a unique semantics function J≠K assigning to

each program a probability distribution of output streams such that the following diagram

commutes in the Kleisli category K¸(D):

T ¶
J≠K //

¶st

✏✏

(A‹)Ê

¶<head,tail>

✏✏
A‹ ◊ T ¶

id◊J≠K // A‹ ◊ (A‹)Ê

I Definition 2 (ASP for streams). A stream program p œ T is almost surely productive (ASP)
if

Pr
‡≥JpK

[‡ has infinitely many concrete output elements a œ A] = 1.

For this to be a sensible definition, the event “‡ has infinitely many concrete output
elements a œ A” must be a measurable set in some ‡-algebra on (A‹)Ê. Following Kerstan
and König, we take the ‡-algebra generated by cones, sets of the form uA

Ê = {v œ

(A‹)Ê
| u prefix of v, u œ (A‹)ú

}. Our definition evidently depends on the definition of
J≠K : T æ D(A‹)Ê; our coinductively defined semantics will be useful later for showing
soundness when verifying ASP, but our definition of ASP is sensible for any semantics J≠K.

?
discrete time

a a? aa · · ·

(deterministic) Coinductive
definitions

A! is a final coalgebra A! ⇠=�! A⇥A!

P
[[�]] //

st
✏✏

A!

<hd,tl>

✏✏
A⇥ P // A⇥A!

Probabilistic Coinductive
definitions

374:4 Almost Sure Productivity

Given measurable spaces (X, �X) and (Y, �Y), a Markov kernel is a function P : X ◊ �Y æ

[0, 1] (equivalently, X æ �Y æ [0, 1]) that maps each source state x œ X to a distribution
over target states P (x, ≠) : �Y æ [0, 1].

Markov kernels form the arrows in the Kleisli category K¸(D) of the D monad; we denote
such arrows by X ¶P // Y . Composition in the Kleisli category is given by integration:

X ¶P // Y ¶
Q // Z (P ¶ Q)(x, A) =

⁄

yœY
P (x, dy) · Q(y, A)

Associativity of composition is essentially Fubini’s theorem.

3 Defining Almost Sure Productivity

We will consider programs that denote probability distributions over coinductive types, such
as infinite streams or trees. In this section, we focus on the definitions for programs producing
streams and binary trees for simplicity, but our results should extend to arbitrary polynomial
functors (see Section 7).

First, we introduce the semantics of programs. Rather than fix a concrete program-
ming language at this point, we let T denote an abstract state space (e.g., the terms of
a programming language or the space of program memories). The state evolves over an
infinite sequence of discrete time steps. At each step, we will probabilistic observe either
a concrete output (a œ A) or nothing (‹), along with a resulting state. Intuitively, p œ T
is ASP if its probability of producing unboundedly many outputs is 1. Formally, we give
states in T a denotational semantics J≠K : T æ D((A‹)Ê) defined coinductively, starting
from a given one-step semantics function that maps each term to an output in A‹ and the
resulting term. Since the step function is probabilistic, we work in the Kleisli category for the
distribution monad; this introduces some complications when computing the final coalgebras
in this category. We take the work on probabilistic streams by Kerstan and König [22] as
our starting point, and then generalize to probabilistic trees.

I Theorem 1 (Finality for streams [22]). Given a set T of programs endowed with a probabilistic

step function st : T æ D(A‹ ◊ T), there is a unique semantics function J≠K assigning to

each program a probability distribution of output streams such that the following diagram

commutes in the Kleisli category K¸(D):

T ¶
J≠K //

¶st

✏✏

(A‹)Ê

¶<head,tail>

✏✏
A‹ ◊ T ¶

id◊J≠K // A‹ ◊ (A‹)Ê

I Definition 2 (ASP for streams). A stream program p œ T is almost surely productive (ASP)
if

Pr
‡≥JpK

[‡ has infinitely many concrete output elements a œ A] = 1.

For this to be a sensible definition, the event “‡ has infinitely many concrete output
elements a œ A” must be a measurable set in some ‡-algebra on (A‹)Ê. Following Kerstan
and König, we take the ‡-algebra generated by cones, sets of the form uA

Ê = {v œ

(A‹)Ê
| u prefix of v, u œ (A‹)ú

}. Our definition evidently depends on the definition of
J≠K : T æ D(A‹)Ê; our coinductively defined semantics will be useful later for showing
soundness when verifying ASP, but our definition of ASP is sensible for any semantics J≠K.

D(A!) is a final coalgebra but … Kl(D)

Probabilistic Coinductive
definitions

374:4 Almost Sure Productivity

Given measurable spaces (X, �X) and (Y, �Y), a Markov kernel is a function P : X ◊ �Y æ

[0, 1] (equivalently, X æ �Y æ [0, 1]) that maps each source state x œ X to a distribution
over target states P (x, ≠) : �Y æ [0, 1].

Markov kernels form the arrows in the Kleisli category K¸(D) of the D monad; we denote
such arrows by X ¶P // Y . Composition in the Kleisli category is given by integration:

X ¶P // Y ¶
Q // Z (P ¶ Q)(x, A) =

⁄

yœY
P (x, dy) · Q(y, A)

Associativity of composition is essentially Fubini’s theorem.

3 Defining Almost Sure Productivity

We will consider programs that denote probability distributions over coinductive types, such
as infinite streams or trees. In this section, we focus on the definitions for programs producing
streams and binary trees for simplicity, but our results should extend to arbitrary polynomial
functors (see Section 7).

First, we introduce the semantics of programs. Rather than fix a concrete program-
ming language at this point, we let T denote an abstract state space (e.g., the terms of
a programming language or the space of program memories). The state evolves over an
infinite sequence of discrete time steps. At each step, we will probabilistic observe either
a concrete output (a œ A) or nothing (‹), along with a resulting state. Intuitively, p œ T
is ASP if its probability of producing unboundedly many outputs is 1. Formally, we give
states in T a denotational semantics J≠K : T æ D((A‹)Ê) defined coinductively, starting
from a given one-step semantics function that maps each term to an output in A‹ and the
resulting term. Since the step function is probabilistic, we work in the Kleisli category for the
distribution monad; this introduces some complications when computing the final coalgebras
in this category. We take the work on probabilistic streams by Kerstan and König [22] as
our starting point, and then generalize to probabilistic trees.

I Theorem 1 (Finality for streams [22]). Given a set T of programs endowed with a probabilistic

step function st : T æ D(A‹ ◊ T), there is a unique semantics function J≠K assigning to

each program a probability distribution of output streams such that the following diagram

commutes in the Kleisli category K¸(D):

T ¶
J≠K //

¶st

✏✏

(A‹)Ê

¶<head,tail>

✏✏
A‹ ◊ T ¶

id◊J≠K // A‹ ◊ (A‹)Ê

I Definition 2 (ASP for streams). A stream program p œ T is almost surely productive (ASP)
if

Pr
‡≥JpK

[‡ has infinitely many concrete output elements a œ A] = 1.

For this to be a sensible definition, the event “‡ has infinitely many concrete output
elements a œ A” must be a measurable set in some ‡-algebra on (A‹)Ê. Following Kerstan
and König, we take the ‡-algebra generated by cones, sets of the form uA

Ê = {v œ

(A‹)Ê
| u prefix of v, u œ (A‹)ú

}. Our definition evidently depends on the definition of
J≠K : T æ D(A‹)Ê; our coinductively defined semantics will be useful later for showing
soundness when verifying ASP, but our definition of ASP is sensible for any semantics J≠K.

D(A!) is a final coalgebra but … Kl(D)

374:4 Almost Sure Productivity

Given measurable spaces (X, �X) and (Y, �Y), a Markov kernel is a function P : X ◊ �Y æ

[0, 1] (equivalently, X æ �Y æ [0, 1]) that maps each source state x œ X to a distribution
over target states P (x, ≠) : �Y æ [0, 1].

Markov kernels form the arrows in the Kleisli category K¸(D) of the D monad; we denote
such arrows by X ¶P // Y . Composition in the Kleisli category is given by integration:

X ¶P // Y ¶
Q // Z (P ¶ Q)(x, A) =

⁄

yœY
P (x, dy) · Q(y, A)

Associativity of composition is essentially Fubini’s theorem.

3 Defining Almost Sure Productivity

We will consider programs that denote probability distributions over coinductive types, such
as infinite streams or trees. In this section, we focus on the definitions for programs producing
streams and binary trees for simplicity, but our results should extend to arbitrary polynomial
functors (see Section 7).

First, we introduce the semantics of programs. Rather than fix a concrete program-
ming language at this point, we let T denote an abstract state space (e.g., the terms of
a programming language or the space of program memories). The state evolves over an
infinite sequence of discrete time steps. At each step, we will probabilistic observe either
a concrete output (a œ A) or nothing (‹), along with a resulting state. Intuitively, p œ T
is ASP if its probability of producing unboundedly many outputs is 1. Formally, we give
states in T a denotational semantics J≠K : T æ D((A‹)Ê) defined coinductively, starting
from a given one-step semantics function that maps each term to an output in A‹ and the
resulting term. Since the step function is probabilistic, we work in the Kleisli category for the
distribution monad; this introduces some complications when computing the final coalgebras
in this category. We take the work on probabilistic streams by Kerstan and König [22] as
our starting point, and then generalize to probabilistic trees.

I Theorem 1 (Finality for streams [22]). Given a set T of programs endowed with a probabilistic

step function st : T æ D(A‹ ◊ T), there is a unique semantics function J≠K assigning to

each program a probability distribution of output streams such that the following diagram

commutes in the Kleisli category K¸(D):

T ¶
J≠K //

¶st

✏✏

(A‹)Ê

¶<head,tail>

✏✏
A‹ ◊ T ¶

id◊J≠K // A‹ ◊ (A‹)Ê

I Definition 2 (ASP for streams). A stream program p œ T is almost surely productive (ASP)
if

Pr
‡≥JpK

[‡ has infinitely many concrete output elements a œ A] = 1.

For this to be a sensible definition, the event “‡ has infinitely many concrete output
elements a œ A” must be a measurable set in some ‡-algebra on (A‹)Ê. Following Kerstan
and König, we take the ‡-algebra generated by cones, sets of the form uA

Ê = {v œ

(A‹)Ê
| u prefix of v, u œ (A‹)ú

}. Our definition evidently depends on the definition of
J≠K : T æ D(A‹)Ê; our coinductively defined semantics will be useful later for showing
soundness when verifying ASP, but our definition of ASP is sensible for any semantics J≠K.

Probabilistic Coinductive
definitions

374:4 Almost Sure Productivity

Given measurable spaces (X, �X) and (Y, �Y), a Markov kernel is a function P : X ◊ �Y æ

[0, 1] (equivalently, X æ �Y æ [0, 1]) that maps each source state x œ X to a distribution
over target states P (x, ≠) : �Y æ [0, 1].

Markov kernels form the arrows in the Kleisli category K¸(D) of the D monad; we denote
such arrows by X ¶P // Y . Composition in the Kleisli category is given by integration:

X ¶P // Y ¶
Q // Z (P ¶ Q)(x, A) =

⁄

yœY
P (x, dy) · Q(y, A)

Associativity of composition is essentially Fubini’s theorem.

3 Defining Almost Sure Productivity

We will consider programs that denote probability distributions over coinductive types, such
as infinite streams or trees. In this section, we focus on the definitions for programs producing
streams and binary trees for simplicity, but our results should extend to arbitrary polynomial
functors (see Section 7).

First, we introduce the semantics of programs. Rather than fix a concrete program-
ming language at this point, we let T denote an abstract state space (e.g., the terms of
a programming language or the space of program memories). The state evolves over an
infinite sequence of discrete time steps. At each step, we will probabilistic observe either
a concrete output (a œ A) or nothing (‹), along with a resulting state. Intuitively, p œ T
is ASP if its probability of producing unboundedly many outputs is 1. Formally, we give
states in T a denotational semantics J≠K : T æ D((A‹)Ê) defined coinductively, starting
from a given one-step semantics function that maps each term to an output in A‹ and the
resulting term. Since the step function is probabilistic, we work in the Kleisli category for the
distribution monad; this introduces some complications when computing the final coalgebras
in this category. We take the work on probabilistic streams by Kerstan and König [22] as
our starting point, and then generalize to probabilistic trees.

I Theorem 1 (Finality for streams [22]). Given a set T of programs endowed with a probabilistic

step function st : T æ D(A‹ ◊ T), there is a unique semantics function J≠K assigning to

each program a probability distribution of output streams such that the following diagram

commutes in the Kleisli category K¸(D):

T ¶
J≠K //

¶st

✏✏

(A‹)Ê

¶<head,tail>

✏✏
A‹ ◊ T ¶

id◊J≠K // A‹ ◊ (A‹)Ê

I Definition 2 (ASP for streams). A stream program p œ T is almost surely productive (ASP)
if

Pr
‡≥JpK

[‡ has infinitely many concrete output elements a œ A] = 1.

For this to be a sensible definition, the event “‡ has infinitely many concrete output
elements a œ A” must be a measurable set in some ‡-algebra on (A‹)Ê. Following Kerstan
and König, we take the ‡-algebra generated by cones, sets of the form uA

Ê = {v œ

(A‹)Ê
| u prefix of v, u œ (A‹)ú

}. Our definition evidently depends on the definition of
J≠K : T æ D(A‹)Ê; our coinductively defined semantics will be useful later for showing
soundness when verifying ASP, but our definition of ASP is sensible for any semantics J≠K.

D(A!) is a final coalgebra but … Kl(D)

Probabilistic Coinductive
definitions

374:4 Almost Sure Productivity

Given measurable spaces (X, �X) and (Y, �Y), a Markov kernel is a function P : X ◊ �Y æ

[0, 1] (equivalently, X æ �Y æ [0, 1]) that maps each source state x œ X to a distribution
over target states P (x, ≠) : �Y æ [0, 1].

Markov kernels form the arrows in the Kleisli category K¸(D) of the D monad; we denote
such arrows by X ¶P // Y . Composition in the Kleisli category is given by integration:

X ¶P // Y ¶
Q // Z (P ¶ Q)(x, A) =

⁄

yœY
P (x, dy) · Q(y, A)

Associativity of composition is essentially Fubini’s theorem.

3 Defining Almost Sure Productivity

We will consider programs that denote probability distributions over coinductive types, such
as infinite streams or trees. In this section, we focus on the definitions for programs producing
streams and binary trees for simplicity, but our results should extend to arbitrary polynomial
functors (see Section 7).

First, we introduce the semantics of programs. Rather than fix a concrete program-
ming language at this point, we let T denote an abstract state space (e.g., the terms of
a programming language or the space of program memories). The state evolves over an
infinite sequence of discrete time steps. At each step, we will probabilistic observe either
a concrete output (a œ A) or nothing (‹), along with a resulting state. Intuitively, p œ T
is ASP if its probability of producing unboundedly many outputs is 1. Formally, we give
states in T a denotational semantics J≠K : T æ D((A‹)Ê) defined coinductively, starting
from a given one-step semantics function that maps each term to an output in A‹ and the
resulting term. Since the step function is probabilistic, we work in the Kleisli category for the
distribution monad; this introduces some complications when computing the final coalgebras
in this category. We take the work on probabilistic streams by Kerstan and König [22] as
our starting point, and then generalize to probabilistic trees.

I Theorem 1 (Finality for streams [22]). Given a set T of programs endowed with a probabilistic

step function st : T æ D(A‹ ◊ T), there is a unique semantics function J≠K assigning to

each program a probability distribution of output streams such that the following diagram

commutes in the Kleisli category K¸(D):

T ¶
J≠K //

¶st

✏✏

(A‹)Ê

¶<head,tail>

✏✏
A‹ ◊ T ¶

id◊J≠K // A‹ ◊ (A‹)Ê

I Definition 2 (ASP for streams). A stream program p œ T is almost surely productive (ASP)
if

Pr
‡≥JpK

[‡ has infinitely many concrete output elements a œ A] = 1.

For this to be a sensible definition, the event “‡ has infinitely many concrete output
elements a œ A” must be a measurable set in some ‡-algebra on (A‹)Ê. Following Kerstan
and König, we take the ‡-algebra generated by cones, sets of the form uA

Ê = {v œ

(A‹)Ê
| u prefix of v, u œ (A‹)ú

}. Our definition evidently depends on the definition of
J≠K : T æ D(A‹)Ê; our coinductively defined semantics will be useful later for showing
soundness when verifying ASP, but our definition of ASP is sensible for any semantics J≠K.

D(A!) is a final coalgebra but … Kl(D)

Composition of — o —> arrows uses monad multiplication

ASP

374:4 Almost Sure Productivity

Given measurable spaces (X, �X) and (Y, �Y), a Markov kernel is a function P : X ◊ �Y æ

[0, 1] (equivalently, X æ �Y æ [0, 1]) that maps each source state x œ X to a distribution
over target states P (x, ≠) : �Y æ [0, 1].

Markov kernels form the arrows in the Kleisli category K¸(D) of the D monad; we denote
such arrows by X ¶P // Y . Composition in the Kleisli category is given by integration:

X ¶P // Y ¶
Q // Z (P ¶ Q)(x, A) =

⁄

yœY
P (x, dy) · Q(y, A)

Associativity of composition is essentially Fubini’s theorem.

3 Defining Almost Sure Productivity

We will consider programs that denote probability distributions over coinductive types, such
as infinite streams or trees. In this section, we focus on the definitions for programs producing
streams and binary trees for simplicity, but our results should extend to arbitrary polynomial
functors (see Section 7).

First, we introduce the semantics of programs. Rather than fix a concrete program-
ming language at this point, we let T denote an abstract state space (e.g., the terms of
a programming language or the space of program memories). The state evolves over an
infinite sequence of discrete time steps. At each step, we will probabilistic observe either
a concrete output (a œ A) or nothing (‹), along with a resulting state. Intuitively, p œ T
is ASP if its probability of producing unboundedly many outputs is 1. Formally, we give
states in T a denotational semantics J≠K : T æ D((A‹)Ê) defined coinductively, starting
from a given one-step semantics function that maps each term to an output in A‹ and the
resulting term. Since the step function is probabilistic, we work in the Kleisli category for the
distribution monad; this introduces some complications when computing the final coalgebras
in this category. We take the work on probabilistic streams by Kerstan and König [22] as
our starting point, and then generalize to probabilistic trees.

I Theorem 1 (Finality for streams [22]). Given a set T of programs endowed with a probabilistic

step function st : T æ D(A‹ ◊ T), there is a unique semantics function J≠K assigning to

each program a probability distribution of output streams such that the following diagram

commutes in the Kleisli category K¸(D):

T ¶
J≠K //

¶st

✏✏

(A‹)Ê

¶<head,tail>

✏✏
A‹ ◊ T ¶

id◊J≠K // A‹ ◊ (A‹)Ê

I Definition 2 (ASP for streams). A stream program p œ T is almost surely productive (ASP)
if

Pr
‡≥JpK

[‡ has infinitely many concrete output elements a œ A] = 1.

For this to be a sensible definition, the event “‡ has infinitely many concrete output
elements a œ A” must be a measurable set in some ‡-algebra on (A‹)Ê. Following Kerstan
and König, we take the ‡-algebra generated by cones, sets of the form uA

Ê = {v œ

(A‹)Ê
| u prefix of v, u œ (A‹)ú

}. Our definition evidently depends on the definition of
J≠K : T æ D(A‹)Ê; our coinductively defined semantics will be useful later for showing
soundness when verifying ASP, but our definition of ASP is sensible for any semantics J≠K.

A stream program is almost surely productive (ASP) ifp : T

ASP

374:4 Almost Sure Productivity

Given measurable spaces (X, �X) and (Y, �Y), a Markov kernel is a function P : X ◊ �Y æ

[0, 1] (equivalently, X æ �Y æ [0, 1]) that maps each source state x œ X to a distribution
over target states P (x, ≠) : �Y æ [0, 1].

Markov kernels form the arrows in the Kleisli category K¸(D) of the D monad; we denote
such arrows by X ¶P // Y . Composition in the Kleisli category is given by integration:

X ¶P // Y ¶
Q // Z (P ¶ Q)(x, A) =

⁄

yœY
P (x, dy) · Q(y, A)

Associativity of composition is essentially Fubini’s theorem.

3 Defining Almost Sure Productivity

We will consider programs that denote probability distributions over coinductive types, such
as infinite streams or trees. In this section, we focus on the definitions for programs producing
streams and binary trees for simplicity, but our results should extend to arbitrary polynomial
functors (see Section 7).

First, we introduce the semantics of programs. Rather than fix a concrete program-
ming language at this point, we let T denote an abstract state space (e.g., the terms of
a programming language or the space of program memories). The state evolves over an
infinite sequence of discrete time steps. At each step, we will probabilistic observe either
a concrete output (a œ A) or nothing (‹), along with a resulting state. Intuitively, p œ T
is ASP if its probability of producing unboundedly many outputs is 1. Formally, we give
states in T a denotational semantics J≠K : T æ D((A‹)Ê) defined coinductively, starting
from a given one-step semantics function that maps each term to an output in A‹ and the
resulting term. Since the step function is probabilistic, we work in the Kleisli category for the
distribution monad; this introduces some complications when computing the final coalgebras
in this category. We take the work on probabilistic streams by Kerstan and König [22] as
our starting point, and then generalize to probabilistic trees.

I Theorem 1 (Finality for streams [22]). Given a set T of programs endowed with a probabilistic

step function st : T æ D(A‹ ◊ T), there is a unique semantics function J≠K assigning to

each program a probability distribution of output streams such that the following diagram

commutes in the Kleisli category K¸(D):

T ¶
J≠K //

¶st

✏✏

(A‹)Ê

¶<head,tail>

✏✏
A‹ ◊ T ¶

id◊J≠K // A‹ ◊ (A‹)Ê

I Definition 2 (ASP for streams). A stream program p œ T is almost surely productive (ASP)
if

Pr
‡≥JpK

[‡ has infinitely many concrete output elements a œ A] = 1.

For this to be a sensible definition, the event “‡ has infinitely many concrete output
elements a œ A” must be a measurable set in some ‡-algebra on (A‹)Ê. Following Kerstan
and König, we take the ‡-algebra generated by cones, sets of the form uA

Ê = {v œ

(A‹)Ê
| u prefix of v, u œ (A‹)ú

}. Our definition evidently depends on the definition of
J≠K : T æ D(A‹)Ê; our coinductively defined semantics will be useful later for showing
soundness when verifying ASP, but our definition of ASP is sensible for any semantics J≠K.

A stream program is almost surely productive (ASP) ifp : T

definition parametrised on [[-]] or st : T —> A x T

Some remarks

• Definition of monad D involves basic measure
theory

• Multiplication is given by integration

• All events need to be measurable

Trees

A. Aguirre, G. Barthe, J. Hsu, A. Silva 374:5

I Example 3. Let us consider the following program defining a stream ‡ recursively, in
which each recursion step is determined by a coin flip with bias p:

‡ = (a : ‡) üp tail(‡)

In the next section we will formally introduce this programming language, but intuitively
the program repeatedly flips a coin. If the coin flip results in heads the program produces an
element a. Otherwise the program tries to compute the tail of the recursive call; the first
element produced by the recursive call is dropped (consumed), while subsequent elements
produced (if any) are emitted as output.

To analyze the productivity behavior of this probabilistic program, we can reason intu-
itively. Each time the second branch is chosen, the program must choose the first branch
strictly more than once in order to produce one output (since, e.g., tail(a : ‡) = ‡). Accord-
ingly, the productivity behavior of this program depends on the value of p. When p is less
than 1/2, the program chooses the first branch less often than the second branch and the
program is not ASP. On the other hand, when p > 1/2 the program will tend to produce
more elements a than are consumed by the destructors, and the above program is ASP. In
the sequel, we will show two methods to formally prove this fact.

It will be convenient to represent the functor as F (X) = A‹ ◊ X as A ◊ X + X. In the
rest of this paper we will often use the latter representation and refer to the final coalgebra

as observation streams OS = (A‹)Ê with structure OS A ◊ OS + OS<out,unf>

≥=
oo given by

out(a, ‡) = a : ‡ and unf(‡) = ‹ : ‡.
Streams are not the only coinductively defined data; infinite binary trees are another

classical example. To generate trees, we can imagine that a program produces an output
value—labeling the root node—and two child programs, which then generate the left and
right child of a tree of outputs. Much like we saw for streams, probabilistic programs
generating these trees may sometimes step to a single new program without producing
outputs. Accordingly we will work with the functor F (X) = A ◊ X ◊ X + X, where the left
summand can be thought of as the result of an output step, while the right summand gives
the result of a non-output step.

I Theorem 4 (Finality for trees). Given a set of programs T endowed with a probabilistic

step function st : T æ D(A ◊ T ◊ T + T), there is a unique semantics function J≠K assigning

to each program a probability distribution of output trees such that the following diagram

commutes in the Kleisli category K¸(D).

T ¶
J≠K //

¶st

✏✏

Trees(A‹)

¶<out,unf>≠1

✏✏
A ◊ T ◊ T + T ¶

id◊J≠K◊J≠K+J≠K // A ◊ Trees(A‹) ◊ Trees(A‹) + Trees(A‹)

Trees(A‹) are infinite trees where the nodes are either elements of A or ‹. An a-node has
two children whereas a ‹-node only has one child. Formally, we can construct these trees
with the two maps out and unf:

unf(
‡

) =

‹

‡
out(a,

‡
,

·) =

a

‡ ·

ICALP 2018

Trees

A. Aguirre, G. Barthe, J. Hsu, A. Silva 374:5

I Example 3. Let us consider the following program defining a stream ‡ recursively, in
which each recursion step is determined by a coin flip with bias p:

‡ = (a : ‡) üp tail(‡)

In the next section we will formally introduce this programming language, but intuitively
the program repeatedly flips a coin. If the coin flip results in heads the program produces an
element a. Otherwise the program tries to compute the tail of the recursive call; the first
element produced by the recursive call is dropped (consumed), while subsequent elements
produced (if any) are emitted as output.

To analyze the productivity behavior of this probabilistic program, we can reason intu-
itively. Each time the second branch is chosen, the program must choose the first branch
strictly more than once in order to produce one output (since, e.g., tail(a : ‡) = ‡). Accord-
ingly, the productivity behavior of this program depends on the value of p. When p is less
than 1/2, the program chooses the first branch less often than the second branch and the
program is not ASP. On the other hand, when p > 1/2 the program will tend to produce
more elements a than are consumed by the destructors, and the above program is ASP. In
the sequel, we will show two methods to formally prove this fact.

It will be convenient to represent the functor as F (X) = A‹ ◊ X as A ◊ X + X. In the
rest of this paper we will often use the latter representation and refer to the final coalgebra

as observation streams OS = (A‹)Ê with structure OS A ◊ OS + OS<out,unf>

≥=
oo given by

out(a, ‡) = a : ‡ and unf(‡) = ‹ : ‡.
Streams are not the only coinductively defined data; infinite binary trees are another

classical example. To generate trees, we can imagine that a program produces an output
value—labeling the root node—and two child programs, which then generate the left and
right child of a tree of outputs. Much like we saw for streams, probabilistic programs
generating these trees may sometimes step to a single new program without producing
outputs. Accordingly we will work with the functor F (X) = A ◊ X ◊ X + X, where the left
summand can be thought of as the result of an output step, while the right summand gives
the result of a non-output step.

I Theorem 4 (Finality for trees). Given a set of programs T endowed with a probabilistic

step function st : T æ D(A ◊ T ◊ T + T), there is a unique semantics function J≠K assigning

to each program a probability distribution of output trees such that the following diagram

commutes in the Kleisli category K¸(D).

T ¶
J≠K //

¶st

✏✏

Trees(A‹)

¶<out,unf>≠1

✏✏
A ◊ T ◊ T + T ¶

id◊J≠K◊J≠K+J≠K // A ◊ Trees(A‹) ◊ Trees(A‹) + Trees(A‹)

Trees(A‹) are infinite trees where the nodes are either elements of A or ‹. An a-node has
two children whereas a ‹-node only has one child. Formally, we can construct these trees
with the two maps out and unf:

unf(
‡

) =

‹

‡
out(a,

‡
,

·) =

a

‡ ·

ICALP 2018

374:6 Almost Sure Productivity

Defining ASP for trees is a bit more subtle than for streams. Due to measurability issues,
we can only refer to the probability of infinitely many outputs along one path at a time
in the tree. A bit more formally, let w œ {L, R}

Ê be an infinite word on alphabet {L, R}.
Given any tree t œ Trees(A‹), w induces a single path tw in the tree: from the root, the path
follows the left/right child of a-nodes as indicated by w, and the single child of ‹-nodes.

I Definition 5 (ASP for trees). A tree program p œ T is almost surely productive (ASP) if

’w œ {L, R}
Ê

. Pr
t≥JpK

[tw has infinitely many concrete output nodes a œ A] = 1.

We have omitted the ‡-algebra structure on Trees(A‹) for lack of space, but it is quite
similar to the one for streams: it is generated by the cones uTrees(A‹) = {t œ Trees(A‹) |

t is an extension of the finite tree u}.

I Example 6. Consider the probabilistic tree defined by the following equation:

· = mk(a, ·, ·) üp left(·)

The mk(a, t1, t2) constructor produces a tree with the root labeled by a and children t1 and
t2, while the left(t) destructor consumes the output at the root of t and steps to the left
child of t. While this example is more di�cult to work out informally, it has similar ASP
behavior as the previous example we saw for streams: when p > 1/2 this program is ASP,
since it has strictly higher probability of constructing a node (and producing an output)
than destructing a node (and consuming an output).

4 A Calculus for Probabilistic Streams and Trees

Now that we have introduced almost sure productivity, we consider how to verify this property.
We work with two variants of a simple calculus for probabilistic coinductive programming,
for producing streams and trees respectively. We suppose that outputs are drawn from some
finite alphabet A. The language for streams considers terms of the following form:

e œ T ::= ‡ | e üp e | a : e (a œ A) | tail(e)

The distinguished variable ‡ represents a recursive occurrence of the stream so that streams
can be defined via equations ‡ = e. The operation e1 üp e2 selects e1 with probability p and
e2 with probability 1 ≠ p. The constructor a : e builds a stream with head a and tail e. The
destructor tail(e) computes the tail of a stream, discarding the head.

The language for trees is similar, with terms of the following form:

e œ T ::= · | e üp e | mk(a, e, e) (a œ A) | left(e) | right(e)

The variable · represents a recursive occurrence of the tree, so that trees are defined as · = e.
The constructor mk(a, e1, e2) builds a tree with root labeled a and children e1 and e2. The
destructors left(e) and right(e) extract the left and right children of e, respectively.

We interpret these terms coalgebraically by first giving a step function from ste : T æ

D(F (T)) for an appropriate functor, and then taking the semantics as the map to the final
coalgebra. For streams, we take the functor F (X) = A◊X +X: a term steps to a distribution
over either an output in A and a resulting term, or just a resulting term (with no output).
To describe how the recursive occurrence ‡ steps, we parametrize the step function ste by
the top level stream term e; this term remains fixed throughout the evaluation. This choice

A tree program is almost surely productive (ASP) ifp : T

Example: a language for
streams

374:6 Almost Sure Productivity

Defining ASP for trees is a bit more subtle than for streams. Due to measurability issues,
we can only refer to the probability of infinitely many outputs along one path at a time
in the tree. A bit more formally, let w œ {L, R}

Ê be an infinite word on alphabet {L, R}.
Given any tree t œ Trees(A‹), w induces a single path tw in the tree: from the root, the path
follows the left/right child of a-nodes as indicated by w, and the single child of ‹-nodes.

I Definition 5 (ASP for trees). A tree program p œ T is almost surely productive (ASP) if

’w œ {L, R}
Ê

. Pr
t≥JpK

[tw has infinitely many concrete output nodes a œ A] = 1.

We have omitted the ‡-algebra structure on Trees(A‹) for lack of space, but it is quite
similar to the one for streams: it is generated by the cones uTrees(A‹) = {t œ Trees(A‹) |

t is an extension of the finite tree u}.

I Example 6. Consider the probabilistic tree defined by the following equation:

· = mk(a, ·, ·) üp left(·)

The mk(a, t1, t2) constructor produces a tree with the root labeled by a and children t1 and
t2, while the left(t) destructor consumes the output at the root of t and steps to the left
child of t. While this example is more di�cult to work out informally, it has similar ASP
behavior as the previous example we saw for streams: when p > 1/2 this program is ASP,
since it has strictly higher probability of constructing a node (and producing an output)
than destructing a node (and consuming an output).

4 A Calculus for Probabilistic Streams and Trees

Now that we have introduced almost sure productivity, we consider how to verify this property.
We work with two variants of a simple calculus for probabilistic coinductive programming,
for producing streams and trees respectively. We suppose that outputs are drawn from some
finite alphabet A. The language for streams considers terms of the following form:

e œ T ::= ‡ | e üp e | a : e (a œ A) | tail(e)

The distinguished variable ‡ represents a recursive occurrence of the stream so that streams
can be defined via equations ‡ = e. The operation e1 üp e2 selects e1 with probability p and
e2 with probability 1 ≠ p. The constructor a : e builds a stream with head a and tail e. The
destructor tail(e) computes the tail of a stream, discarding the head.

The language for trees is similar, with terms of the following form:

e œ T ::= · | e üp e | mk(a, e, e) (a œ A) | left(e) | right(e)

The variable · represents a recursive occurrence of the tree, so that trees are defined as · = e.
The constructor mk(a, e1, e2) builds a tree with root labeled a and children e1 and e2. The
destructors left(e) and right(e) extract the left and right children of e, respectively.

We interpret these terms coalgebraically by first giving a step function from ste : T æ

D(F (T)) for an appropriate functor, and then taking the semantics as the map to the final
coalgebra. For streams, we take the functor F (X) = A◊X +X: a term steps to a distribution
over either an output in A and a resulting term, or just a resulting term (with no output).
To describe how the recursive occurrence ‡ steps, we parametrize the step function ste by
the top level stream term e; this term remains fixed throughout the evaluation. This choice

Example: a language for
streams

374:6 Almost Sure Productivity

Defining ASP for trees is a bit more subtle than for streams. Due to measurability issues,
we can only refer to the probability of infinitely many outputs along one path at a time
in the tree. A bit more formally, let w œ {L, R}

Ê be an infinite word on alphabet {L, R}.
Given any tree t œ Trees(A‹), w induces a single path tw in the tree: from the root, the path
follows the left/right child of a-nodes as indicated by w, and the single child of ‹-nodes.

I Definition 5 (ASP for trees). A tree program p œ T is almost surely productive (ASP) if

’w œ {L, R}
Ê

. Pr
t≥JpK

[tw has infinitely many concrete output nodes a œ A] = 1.

We have omitted the ‡-algebra structure on Trees(A‹) for lack of space, but it is quite
similar to the one for streams: it is generated by the cones uTrees(A‹) = {t œ Trees(A‹) |

t is an extension of the finite tree u}.

I Example 6. Consider the probabilistic tree defined by the following equation:

· = mk(a, ·, ·) üp left(·)

The mk(a, t1, t2) constructor produces a tree with the root labeled by a and children t1 and
t2, while the left(t) destructor consumes the output at the root of t and steps to the left
child of t. While this example is more di�cult to work out informally, it has similar ASP
behavior as the previous example we saw for streams: when p > 1/2 this program is ASP,
since it has strictly higher probability of constructing a node (and producing an output)
than destructing a node (and consuming an output).

4 A Calculus for Probabilistic Streams and Trees

Now that we have introduced almost sure productivity, we consider how to verify this property.
We work with two variants of a simple calculus for probabilistic coinductive programming,
for producing streams and trees respectively. We suppose that outputs are drawn from some
finite alphabet A. The language for streams considers terms of the following form:

e œ T ::= ‡ | e üp e | a : e (a œ A) | tail(e)

The distinguished variable ‡ represents a recursive occurrence of the stream so that streams
can be defined via equations ‡ = e. The operation e1 üp e2 selects e1 with probability p and
e2 with probability 1 ≠ p. The constructor a : e builds a stream with head a and tail e. The
destructor tail(e) computes the tail of a stream, discarding the head.

The language for trees is similar, with terms of the following form:

e œ T ::= · | e üp e | mk(a, e, e) (a œ A) | left(e) | right(e)

The variable · represents a recursive occurrence of the tree, so that trees are defined as · = e.
The constructor mk(a, e1, e2) builds a tree with root labeled a and children e1 and e2. The
destructors left(e) and right(e) extract the left and right children of e, respectively.

We interpret these terms coalgebraically by first giving a step function from ste : T æ

D(F (T)) for an appropriate functor, and then taking the semantics as the map to the final
coalgebra. For streams, we take the functor F (X) = A◊X +X: a term steps to a distribution
over either an output in A and a resulting term, or just a resulting term (with no output).
To describe how the recursive occurrence ‡ steps, we parametrize the step function ste by
the top level stream term e; this term remains fixed throughout the evaluation. This choice

A. Aguirre, G. Barthe, J. Hsu, A. Silva 374:7

restricts recursion to be global in nature, i.e., our language does not support mutual or
nested recursion. Supporting more advanced recursion is also possible, but we stick with the
simpler setting here; we return to this point in Section 7.

The step relation is defined by case analysis on the syntax of terms. Probabilistic choice
terms reduce by scaling the result of stepping e and the result of stepping e

Õ by p and 1 ≠ p

respectively, and then combining the distributions:

ste(e1 üp e2) , p · ste(e1) + (1 ≠ p) · ste(e2)

The next cases push destructors into terms:

ste(tailk(a : e)) , ste(tailk≠1(e))
ste(tailk(e1 üp e2)) , ste(tailk(e1) üp tailk(e2))

Here and below, we write tailk as a shorthand for k > 0 applications of tail.
The remaining cases return point distributions. If we have reached a constructor then we

produce a single output. Otherwise, we replace ‡ by the top level stream term, unfolding a
recursive occurrence.

ste(a : e
Õ) , ”(inl(a, e

Õ))
ste(eÕ) , ”(inr(eÕ[e/‡])) otherwise

Note that a single evaluation step of a stream may lead to multiple constructors at top level
of the term, but only one output can be recorded each step—the remaining constructors are
preserved in the term and will give rise to outputs in subsequent steps.

The semantics is similar for trees. We take the functor F (X) = (A ◊ X ◊ X) + X:
a term reduces to a distribution over either an output in A and two child terms, or a
resulting term and no output. The main changes to the step relation are for constructors and
destructors. The constructor mk(a, e1, e2) reduces to ”(inl(a, e1, e2)), representing an output
a this step. Destructors are handle like tail for streams, where left(mk(a, e1, e2)) reduces to
e1 and right(mk(a, e1, e2)) reduces to e2, and tailk(≠) is generalized to any finite combination
of left(≠) and right(≠).

Concretely, let C[e] be any (possibly empty) combination of left and right applied to e.
We have the following step rules:

ste(C[left(mk(a, el, er))]) , ste(C[el])
ste(C[right(mk(a, el, er))]) , ste(C[er])

ste(C[e1 üp e2]) , p · ste(C[e1]) + (1 ≠ p) · ste(C[e2])
ste(mk(a, el, er)) , ”(inl(a, el, er))

ste(C[·]) , ”(inr(C[e]))

5 Syntactic Conditions for ASP

With the language and semantics in hand, we now turn to proving ASP. While it is theoretically
possible to reason directly on the semantics using our definitions from Section 3, in practice it
is much easier to reason about the language. In this section we present a syntactic su�cient
condition for ASP. Intuitively, the idea is to approximate the expected number of outputs
every step; if this measure is strictly positive, then the program is ASP.

ICALP 2018

Example: a language for
streams

374:6 Almost Sure Productivity

Defining ASP for trees is a bit more subtle than for streams. Due to measurability issues,
we can only refer to the probability of infinitely many outputs along one path at a time
in the tree. A bit more formally, let w œ {L, R}

Ê be an infinite word on alphabet {L, R}.
Given any tree t œ Trees(A‹), w induces a single path tw in the tree: from the root, the path
follows the left/right child of a-nodes as indicated by w, and the single child of ‹-nodes.

I Definition 5 (ASP for trees). A tree program p œ T is almost surely productive (ASP) if

’w œ {L, R}
Ê

. Pr
t≥JpK

[tw has infinitely many concrete output nodes a œ A] = 1.

We have omitted the ‡-algebra structure on Trees(A‹) for lack of space, but it is quite
similar to the one for streams: it is generated by the cones uTrees(A‹) = {t œ Trees(A‹) |

t is an extension of the finite tree u}.

I Example 6. Consider the probabilistic tree defined by the following equation:

· = mk(a, ·, ·) üp left(·)

The mk(a, t1, t2) constructor produces a tree with the root labeled by a and children t1 and
t2, while the left(t) destructor consumes the output at the root of t and steps to the left
child of t. While this example is more di�cult to work out informally, it has similar ASP
behavior as the previous example we saw for streams: when p > 1/2 this program is ASP,
since it has strictly higher probability of constructing a node (and producing an output)
than destructing a node (and consuming an output).

4 A Calculus for Probabilistic Streams and Trees

Now that we have introduced almost sure productivity, we consider how to verify this property.
We work with two variants of a simple calculus for probabilistic coinductive programming,
for producing streams and trees respectively. We suppose that outputs are drawn from some
finite alphabet A. The language for streams considers terms of the following form:

e œ T ::= ‡ | e üp e | a : e (a œ A) | tail(e)

The distinguished variable ‡ represents a recursive occurrence of the stream so that streams
can be defined via equations ‡ = e. The operation e1 üp e2 selects e1 with probability p and
e2 with probability 1 ≠ p. The constructor a : e builds a stream with head a and tail e. The
destructor tail(e) computes the tail of a stream, discarding the head.

The language for trees is similar, with terms of the following form:

e œ T ::= · | e üp e | mk(a, e, e) (a œ A) | left(e) | right(e)

The variable · represents a recursive occurrence of the tree, so that trees are defined as · = e.
The constructor mk(a, e1, e2) builds a tree with root labeled a and children e1 and e2. The
destructors left(e) and right(e) extract the left and right children of e, respectively.

We interpret these terms coalgebraically by first giving a step function from ste : T æ

D(F (T)) for an appropriate functor, and then taking the semantics as the map to the final
coalgebra. For streams, we take the functor F (X) = A◊X +X: a term steps to a distribution
over either an output in A and a resulting term, or just a resulting term (with no output).
To describe how the recursive occurrence ‡ steps, we parametrize the step function ste by
the top level stream term e; this term remains fixed throughout the evaluation. This choice

A. Aguirre, G. Barthe, J. Hsu, A. Silva 374:7

restricts recursion to be global in nature, i.e., our language does not support mutual or
nested recursion. Supporting more advanced recursion is also possible, but we stick with the
simpler setting here; we return to this point in Section 7.

The step relation is defined by case analysis on the syntax of terms. Probabilistic choice
terms reduce by scaling the result of stepping e and the result of stepping e

Õ by p and 1 ≠ p

respectively, and then combining the distributions:

ste(e1 üp e2) , p · ste(e1) + (1 ≠ p) · ste(e2)

The next cases push destructors into terms:

ste(tailk(a : e)) , ste(tailk≠1(e))
ste(tailk(e1 üp e2)) , ste(tailk(e1) üp tailk(e2))

Here and below, we write tailk as a shorthand for k > 0 applications of tail.
The remaining cases return point distributions. If we have reached a constructor then we

produce a single output. Otherwise, we replace ‡ by the top level stream term, unfolding a
recursive occurrence.

ste(a : e
Õ) , ”(inl(a, e

Õ))
ste(eÕ) , ”(inr(eÕ[e/‡])) otherwise

Note that a single evaluation step of a stream may lead to multiple constructors at top level
of the term, but only one output can be recorded each step—the remaining constructors are
preserved in the term and will give rise to outputs in subsequent steps.

The semantics is similar for trees. We take the functor F (X) = (A ◊ X ◊ X) + X:
a term reduces to a distribution over either an output in A and two child terms, or a
resulting term and no output. The main changes to the step relation are for constructors and
destructors. The constructor mk(a, e1, e2) reduces to ”(inl(a, e1, e2)), representing an output
a this step. Destructors are handle like tail for streams, where left(mk(a, e1, e2)) reduces to
e1 and right(mk(a, e1, e2)) reduces to e2, and tailk(≠) is generalized to any finite combination
of left(≠) and right(≠).

Concretely, let C[e] be any (possibly empty) combination of left and right applied to e.
We have the following step rules:

ste(C[left(mk(a, el, er))]) , ste(C[el])
ste(C[right(mk(a, el, er))]) , ste(C[er])

ste(C[e1 üp e2]) , p · ste(C[e1]) + (1 ≠ p) · ste(C[e2])
ste(mk(a, el, er)) , ”(inl(a, el, er))

ste(C[·]) , ”(inr(C[e]))

5 Syntactic Conditions for ASP

With the language and semantics in hand, we now turn to proving ASP. While it is theoretically
possible to reason directly on the semantics using our definitions from Section 3, in practice it
is much easier to reason about the language. In this section we present a syntactic su�cient
condition for ASP. Intuitively, the idea is to approximate the expected number of outputs
every step; if this measure is strictly positive, then the program is ASP.

ICALP 2018

A. Aguirre, G. Barthe, J. Hsu, A. Silva 374:7

restricts recursion to be global in nature, i.e., our language does not support mutual or
nested recursion. Supporting more advanced recursion is also possible, but we stick with the
simpler setting here; we return to this point in Section 7.

The step relation is defined by case analysis on the syntax of terms. Probabilistic choice
terms reduce by scaling the result of stepping e and the result of stepping e

Õ by p and 1 ≠ p

respectively, and then combining the distributions:

ste(e1 üp e2) , p · ste(e1) + (1 ≠ p) · ste(e2)

The next cases push destructors into terms:

ste(tailk(a : e)) , ste(tailk≠1(e))
ste(tailk(e1 üp e2)) , ste(tailk(e1) üp tailk(e2))

Here and below, we write tailk as a shorthand for k > 0 applications of tail.
The remaining cases return point distributions. If we have reached a constructor then we

produce a single output. Otherwise, we replace ‡ by the top level stream term, unfolding a
recursive occurrence.

ste(a : e
Õ) , ”(inl(a, e

Õ))
ste(eÕ) , ”(inr(eÕ[e/‡])) otherwise

Note that a single evaluation step of a stream may lead to multiple constructors at top level
of the term, but only one output can be recorded each step—the remaining constructors are
preserved in the term and will give rise to outputs in subsequent steps.

The semantics is similar for trees. We take the functor F (X) = (A ◊ X ◊ X) + X:
a term reduces to a distribution over either an output in A and two child terms, or a
resulting term and no output. The main changes to the step relation are for constructors and
destructors. The constructor mk(a, e1, e2) reduces to ”(inl(a, e1, e2)), representing an output
a this step. Destructors are handle like tail for streams, where left(mk(a, e1, e2)) reduces to
e1 and right(mk(a, e1, e2)) reduces to e2, and tailk(≠) is generalized to any finite combination
of left(≠) and right(≠).

Concretely, let C[e] be any (possibly empty) combination of left and right applied to e.
We have the following step rules:

ste(C[left(mk(a, el, er))]) , ste(C[el])
ste(C[right(mk(a, el, er))]) , ste(C[er])

ste(C[e1 üp e2]) , p · ste(C[e1]) + (1 ≠ p) · ste(C[e2])
ste(mk(a, el, er)) , ”(inl(a, el, er))

ste(C[·]) , ”(inr(C[e]))

5 Syntactic Conditions for ASP

With the language and semantics in hand, we now turn to proving ASP. While it is theoretically
possible to reason directly on the semantics using our definitions from Section 3, in practice it
is much easier to reason about the language. In this section we present a syntactic su�cient
condition for ASP. Intuitively, the idea is to approximate the expected number of outputs
every step; if this measure is strictly positive, then the program is ASP.

ICALP 2018

Example: a language for
streams

374:6 Almost Sure Productivity

Defining ASP for trees is a bit more subtle than for streams. Due to measurability issues,
we can only refer to the probability of infinitely many outputs along one path at a time
in the tree. A bit more formally, let w œ {L, R}

Ê be an infinite word on alphabet {L, R}.
Given any tree t œ Trees(A‹), w induces a single path tw in the tree: from the root, the path
follows the left/right child of a-nodes as indicated by w, and the single child of ‹-nodes.

I Definition 5 (ASP for trees). A tree program p œ T is almost surely productive (ASP) if

’w œ {L, R}
Ê

. Pr
t≥JpK

[tw has infinitely many concrete output nodes a œ A] = 1.

We have omitted the ‡-algebra structure on Trees(A‹) for lack of space, but it is quite
similar to the one for streams: it is generated by the cones uTrees(A‹) = {t œ Trees(A‹) |

t is an extension of the finite tree u}.

I Example 6. Consider the probabilistic tree defined by the following equation:

· = mk(a, ·, ·) üp left(·)

The mk(a, t1, t2) constructor produces a tree with the root labeled by a and children t1 and
t2, while the left(t) destructor consumes the output at the root of t and steps to the left
child of t. While this example is more di�cult to work out informally, it has similar ASP
behavior as the previous example we saw for streams: when p > 1/2 this program is ASP,
since it has strictly higher probability of constructing a node (and producing an output)
than destructing a node (and consuming an output).

4 A Calculus for Probabilistic Streams and Trees

Now that we have introduced almost sure productivity, we consider how to verify this property.
We work with two variants of a simple calculus for probabilistic coinductive programming,
for producing streams and trees respectively. We suppose that outputs are drawn from some
finite alphabet A. The language for streams considers terms of the following form:

e œ T ::= ‡ | e üp e | a : e (a œ A) | tail(e)

The distinguished variable ‡ represents a recursive occurrence of the stream so that streams
can be defined via equations ‡ = e. The operation e1 üp e2 selects e1 with probability p and
e2 with probability 1 ≠ p. The constructor a : e builds a stream with head a and tail e. The
destructor tail(e) computes the tail of a stream, discarding the head.

The language for trees is similar, with terms of the following form:

e œ T ::= · | e üp e | mk(a, e, e) (a œ A) | left(e) | right(e)

The variable · represents a recursive occurrence of the tree, so that trees are defined as · = e.
The constructor mk(a, e1, e2) builds a tree with root labeled a and children e1 and e2. The
destructors left(e) and right(e) extract the left and right children of e, respectively.

We interpret these terms coalgebraically by first giving a step function from ste : T æ

D(F (T)) for an appropriate functor, and then taking the semantics as the map to the final
coalgebra. For streams, we take the functor F (X) = A◊X +X: a term steps to a distribution
over either an output in A and a resulting term, or just a resulting term (with no output).
To describe how the recursive occurrence ‡ steps, we parametrize the step function ste by
the top level stream term e; this term remains fixed throughout the evaluation. This choice

A. Aguirre, G. Barthe, J. Hsu, A. Silva 374:7

restricts recursion to be global in nature, i.e., our language does not support mutual or
nested recursion. Supporting more advanced recursion is also possible, but we stick with the
simpler setting here; we return to this point in Section 7.

The step relation is defined by case analysis on the syntax of terms. Probabilistic choice
terms reduce by scaling the result of stepping e and the result of stepping e

Õ by p and 1 ≠ p

respectively, and then combining the distributions:

ste(e1 üp e2) , p · ste(e1) + (1 ≠ p) · ste(e2)

The next cases push destructors into terms:

ste(tailk(a : e)) , ste(tailk≠1(e))
ste(tailk(e1 üp e2)) , ste(tailk(e1) üp tailk(e2))

Here and below, we write tailk as a shorthand for k > 0 applications of tail.
The remaining cases return point distributions. If we have reached a constructor then we

produce a single output. Otherwise, we replace ‡ by the top level stream term, unfolding a
recursive occurrence.

ste(a : e
Õ) , ”(inl(a, e

Õ))
ste(eÕ) , ”(inr(eÕ[e/‡])) otherwise

Note that a single evaluation step of a stream may lead to multiple constructors at top level
of the term, but only one output can be recorded each step—the remaining constructors are
preserved in the term and will give rise to outputs in subsequent steps.

The semantics is similar for trees. We take the functor F (X) = (A ◊ X ◊ X) + X:
a term reduces to a distribution over either an output in A and two child terms, or a
resulting term and no output. The main changes to the step relation are for constructors and
destructors. The constructor mk(a, e1, e2) reduces to ”(inl(a, e1, e2)), representing an output
a this step. Destructors are handle like tail for streams, where left(mk(a, e1, e2)) reduces to
e1 and right(mk(a, e1, e2)) reduces to e2, and tailk(≠) is generalized to any finite combination
of left(≠) and right(≠).

Concretely, let C[e] be any (possibly empty) combination of left and right applied to e.
We have the following step rules:

ste(C[left(mk(a, el, er))]) , ste(C[el])
ste(C[right(mk(a, el, er))]) , ste(C[er])

ste(C[e1 üp e2]) , p · ste(C[e1]) + (1 ≠ p) · ste(C[e2])
ste(mk(a, el, er)) , ”(inl(a, el, er))

ste(C[·]) , ”(inr(C[e]))

5 Syntactic Conditions for ASP

With the language and semantics in hand, we now turn to proving ASP. While it is theoretically
possible to reason directly on the semantics using our definitions from Section 3, in practice it
is much easier to reason about the language. In this section we present a syntactic su�cient
condition for ASP. Intuitively, the idea is to approximate the expected number of outputs
every step; if this measure is strictly positive, then the program is ASP.

ICALP 2018

A. Aguirre, G. Barthe, J. Hsu, A. Silva 374:7

restricts recursion to be global in nature, i.e., our language does not support mutual or
nested recursion. Supporting more advanced recursion is also possible, but we stick with the
simpler setting here; we return to this point in Section 7.

The step relation is defined by case analysis on the syntax of terms. Probabilistic choice
terms reduce by scaling the result of stepping e and the result of stepping e

Õ by p and 1 ≠ p

respectively, and then combining the distributions:

ste(e1 üp e2) , p · ste(e1) + (1 ≠ p) · ste(e2)

The next cases push destructors into terms:

ste(tailk(a : e)) , ste(tailk≠1(e))
ste(tailk(e1 üp e2)) , ste(tailk(e1) üp tailk(e2))

Here and below, we write tailk as a shorthand for k > 0 applications of tail.
The remaining cases return point distributions. If we have reached a constructor then we

produce a single output. Otherwise, we replace ‡ by the top level stream term, unfolding a
recursive occurrence.

ste(a : e
Õ) , ”(inl(a, e

Õ))
ste(eÕ) , ”(inr(eÕ[e/‡])) otherwise

Note that a single evaluation step of a stream may lead to multiple constructors at top level
of the term, but only one output can be recorded each step—the remaining constructors are
preserved in the term and will give rise to outputs in subsequent steps.

The semantics is similar for trees. We take the functor F (X) = (A ◊ X ◊ X) + X:
a term reduces to a distribution over either an output in A and two child terms, or a
resulting term and no output. The main changes to the step relation are for constructors and
destructors. The constructor mk(a, e1, e2) reduces to ”(inl(a, e1, e2)), representing an output
a this step. Destructors are handle like tail for streams, where left(mk(a, e1, e2)) reduces to
e1 and right(mk(a, e1, e2)) reduces to e2, and tailk(≠) is generalized to any finite combination
of left(≠) and right(≠).

Concretely, let C[e] be any (possibly empty) combination of left and right applied to e.
We have the following step rules:

ste(C[left(mk(a, el, er))]) , ste(C[el])
ste(C[right(mk(a, el, er))]) , ste(C[er])

ste(C[e1 üp e2]) , p · ste(C[e1]) + (1 ≠ p) · ste(C[e2])
ste(mk(a, el, er)) , ”(inl(a, el, er))

ste(C[·]) , ”(inr(C[e]))

5 Syntactic Conditions for ASP

With the language and semantics in hand, we now turn to proving ASP. While it is theoretically
possible to reason directly on the semantics using our definitions from Section 3, in practice it
is much easier to reason about the language. In this section we present a syntactic su�cient
condition for ASP. Intuitively, the idea is to approximate the expected number of outputs
every step; if this measure is strictly positive, then the program is ASP.

ICALP 2018

A. Aguirre, G. Barthe, J. Hsu, A. Silva 374:7

restricts recursion to be global in nature, i.e., our language does not support mutual or
nested recursion. Supporting more advanced recursion is also possible, but we stick with the
simpler setting here; we return to this point in Section 7.

The step relation is defined by case analysis on the syntax of terms. Probabilistic choice
terms reduce by scaling the result of stepping e and the result of stepping e

Õ by p and 1 ≠ p

respectively, and then combining the distributions:

ste(e1 üp e2) , p · ste(e1) + (1 ≠ p) · ste(e2)

The next cases push destructors into terms:

ste(tailk(a : e)) , ste(tailk≠1(e))
ste(tailk(e1 üp e2)) , ste(tailk(e1) üp tailk(e2))

Here and below, we write tailk as a shorthand for k > 0 applications of tail.
The remaining cases return point distributions. If we have reached a constructor then we

produce a single output. Otherwise, we replace ‡ by the top level stream term, unfolding a
recursive occurrence.

ste(a : e
Õ) , ”(inl(a, e

Õ))
ste(eÕ) , ”(inr(eÕ[e/‡])) otherwise

Note that a single evaluation step of a stream may lead to multiple constructors at top level
of the term, but only one output can be recorded each step—the remaining constructors are
preserved in the term and will give rise to outputs in subsequent steps.

The semantics is similar for trees. We take the functor F (X) = (A ◊ X ◊ X) + X:
a term reduces to a distribution over either an output in A and two child terms, or a
resulting term and no output. The main changes to the step relation are for constructors and
destructors. The constructor mk(a, e1, e2) reduces to ”(inl(a, e1, e2)), representing an output
a this step. Destructors are handle like tail for streams, where left(mk(a, e1, e2)) reduces to
e1 and right(mk(a, e1, e2)) reduces to e2, and tailk(≠) is generalized to any finite combination
of left(≠) and right(≠).

Concretely, let C[e] be any (possibly empty) combination of left and right applied to e.
We have the following step rules:

ste(C[left(mk(a, el, er))]) , ste(C[el])
ste(C[right(mk(a, el, er))]) , ste(C[er])

ste(C[e1 üp e2]) , p · ste(C[e1]) + (1 ≠ p) · ste(C[e2])
ste(mk(a, el, er)) , ”(inl(a, el, er))

ste(C[·]) , ”(inr(C[e]))

5 Syntactic Conditions for ASP

With the language and semantics in hand, we now turn to proving ASP. While it is theoretically
possible to reason directly on the semantics using our definitions from Section 3, in practice it
is much easier to reason about the language. In this section we present a syntactic su�cient
condition for ASP. Intuitively, the idea is to approximate the expected number of outputs
every step; if this measure is strictly positive, then the program is ASP.

ICALP 2018

ASP I: syntactic measure
374:8 Almost Sure Productivity

5.1 A Syntactic Measure
We define a syntactic measure #(≠) : T æ R by induction on stream terms:

#(‡) , 0
#(e1 üp e2) , p · #(e1) + (1 ≠ p) · #(e2)

#(a : e) , #(e) + 1
#(tail(e)) , #(e) ≠ 1

The measure # describes the expected di�erence between the number of outputs produced
(by constructors) and the number of outputs consumed (by destructors) in each unfolding of
the term. We can define a similar measure for tree terms:

#(·) , 0
#(e1 üp e2) , p · #(e1) + (1 ≠ p) · #(e2)

#(mk(a, e1, e2)) , min(#(e1), #(e2)) + 1
#(left(e)) = #(right(e)) , #(e) ≠ 1

We can now state conditions for ASP for streams and trees.

I Theorem 7. Let e be a stream term with “ = #(e). If “ > 0, e is ASP.

I Theorem 8. Let e be a tree term with “ = #(e). If “ > 0, e is ASP.

5.2 Soundness
The main idea behind the proof for streams is that by construction of the step relation, each
step either produces an output or unfolds a fixed point (if there is no output). In unfolding
steps, the expected measure of the term plus the number of outputs increases by “. By
defining an appropriate martingale and applying the Azuma-Hoe�ding inequality, the sum of
the measure and the number of outputs must increase linearly as the term steps when “ > 0.
Since the measure is bounded above—when the measure is large the stream outputs instead
of unfolding—the number of outputs must increase linearly and the stream is ASP.

We will need a few standard constructions and results from probability theory.

I Definition 9 (See, e.g., [14]). A filtration {Fi}iœN of a ‡-algebra F on a measurable space
A is an sequence of ‡-algebras such that Fi ™ Fi+1 and Fi ™ F , for all i œ N. A stochastic

process is a sequence of random variables {Xi : A æ B}iœN for B some measurable space,
and the process is adapted to the filtration if every Xi is Fi-measurable.

Intuitively, a filtration gives each event a time i at which the event starts to have a
well-defined probability. A stochastic process is adapted to the filtration if its value at time i

only depends on events that are well-defined at time i or before (and not events at future
times).

An important class of stochastic processes are martingales.

I Definition 10 (See, e.g., [14]). Let {Xi : A æ R} be a real-valued stochastic process
adapted to some filtration on A, and let µ be a measure on A. Suppose that Eµ[|Xi|] < Œ

for all Xi. The sequence is a martingale if for all i œ N, we have

Eµ[Xi+1 | Fi] = Xi.

374:8 Almost Sure Productivity

5.1 A Syntactic Measure
We define a syntactic measure #(≠) : T æ R by induction on stream terms:

#(‡) , 0
#(e1 üp e2) , p · #(e1) + (1 ≠ p) · #(e2)

#(a : e) , #(e) + 1
#(tail(e)) , #(e) ≠ 1

The measure # describes the expected di�erence between the number of outputs produced
(by constructors) and the number of outputs consumed (by destructors) in each unfolding of
the term. We can define a similar measure for tree terms:

#(·) , 0
#(e1 üp e2) , p · #(e1) + (1 ≠ p) · #(e2)

#(mk(a, e1, e2)) , min(#(e1), #(e2)) + 1
#(left(e)) = #(right(e)) , #(e) ≠ 1

We can now state conditions for ASP for streams and trees.

I Theorem 7. Let e be a stream term with “ = #(e). If “ > 0, e is ASP.

I Theorem 8. Let e be a tree term with “ = #(e). If “ > 0, e is ASP.

5.2 Soundness
The main idea behind the proof for streams is that by construction of the step relation, each
step either produces an output or unfolds a fixed point (if there is no output). In unfolding
steps, the expected measure of the term plus the number of outputs increases by “. By
defining an appropriate martingale and applying the Azuma-Hoe�ding inequality, the sum of
the measure and the number of outputs must increase linearly as the term steps when “ > 0.
Since the measure is bounded above—when the measure is large the stream outputs instead
of unfolding—the number of outputs must increase linearly and the stream is ASP.

We will need a few standard constructions and results from probability theory.

I Definition 9 (See, e.g., [14]). A filtration {Fi}iœN of a ‡-algebra F on a measurable space
A is an sequence of ‡-algebras such that Fi ™ Fi+1 and Fi ™ F , for all i œ N. A stochastic

process is a sequence of random variables {Xi : A æ B}iœN for B some measurable space,
and the process is adapted to the filtration if every Xi is Fi-measurable.

Intuitively, a filtration gives each event a time i at which the event starts to have a
well-defined probability. A stochastic process is adapted to the filtration if its value at time i

only depends on events that are well-defined at time i or before (and not events at future
times).

An important class of stochastic processes are martingales.

I Definition 10 (See, e.g., [14]). Let {Xi : A æ R} be a real-valued stochastic process
adapted to some filtration on A, and let µ be a measure on A. Suppose that Eµ[|Xi|] < Œ

for all Xi. The sequence is a martingale if for all i œ N, we have

Eµ[Xi+1 | Fi] = Xi.

Theorem

Example

374:12 Almost Sure Productivity

which is a sub-martingale:

EJT0KÕ [Xi+1 | Fi] = EJT0KÕ

S

U
iÿ

j=0

Oj + Oi+1 ≠ “

iÿ

j=0

Uj ≠ “Ui+1 + #(Ti+2) | Fi

T

V

Ø EJT0KÕ

S

U
iÿ

j=0

Oj ≠ “

iÿ

j=0

Uj + #(Ti+1) | Fi

T

V

=
iÿ

j=0

Oj ≠ “

iÿ

j=0

Uj + #(Ti+1) = Xi.

The remainder of the proof is now quite similar to the stream case. #(Ti) Æ c
Õ where c

Õ is
one more than the number of constructors in the original term T0. This follows by observing
that (i) the step function increases the measure by at most the number of constructors or 1
every unfolding step, and (ii) the step function only unfolds if a term reduces to a term with
non-positive measure. Similarly,

iÿ

j=0

Uj Ø Âi/c
Õ
Ê

since each unfolding step leads to at most c
Õ output (non-unfolding) steps.

Since Oi and Ui are both in {0, 1}, this implies that |Xi+1 ≠ Xi| is bounded by some
constant c = c

Õ + 2, depending only on the initial term. We can now apply the Azuma-
Hoe�ding inequality (Theorem 11). For every n œ N and B Ø 0, we have

Pr
JT0KÕ

[Xn ≠ X0 Ø ≠B] Ø 1 ≠ exp(≠B
2
/2nc).

Taking B = n
2/3, we have

Pr
JT0KÕ

[Xn Ø X0 ≠ n
2/3] Ø 1 ≠ exp(≠n

1/3
/2c).

We also know that the total number of outputs along the path w is at least
nÿ

j=0

Oj = Xn + “

nÿ

j=0

Uj ≠ #(Tn+1) Ø Xn + “Ân/c
Õ
Ê.

So if “ > 0, the stream has zero probability of producing at most M outputs along w for
any finite M . This is because for Xn is at least ≠n

2/3 with probability arbitrarily close to 1
(for large enough n), and “Ân/c

Õ
Ê is growing linearly in n for “ positive. Since the tree term

produces at least M outputs along path w with probability 1 for every M and every w, it is
ASP. J

5.3 Examples
We consider a few examples of our analysis. The alphabet A does not a�ect the ASP property;
without loss of generality, we can let the alphabet A be the singleton {ı}.

I Example 12. Consider the stream definition ‡ = (ı : ‡) üp tail(‡). The # measure of
the stream term is p · 1 + (1 ≠ p) · (≠1) = 2p ≠ 1. By Theorem 7, the stream is ASP when
p > 1/2.

A. Aguirre, G. Barthe, J. Hsu, A. Silva 374:5

I Example 3. Let us consider the following program defining a stream ‡ recursively, in
which each recursion step is determined by a coin flip with bias p:

‡ = (a : ‡) üp tail(‡)

In the next section we will formally introduce this programming language, but intuitively
the program repeatedly flips a coin. If the coin flip results in heads the program produces an
element a. Otherwise the program tries to compute the tail of the recursive call; the first
element produced by the recursive call is dropped (consumed), while subsequent elements
produced (if any) are emitted as output.

To analyze the productivity behavior of this probabilistic program, we can reason intu-
itively. Each time the second branch is chosen, the program must choose the first branch
strictly more than once in order to produce one output (since, e.g., tail(a : ‡) = ‡). Accord-
ingly, the productivity behavior of this program depends on the value of p. When p is less
than 1/2, the program chooses the first branch less often than the second branch and the
program is not ASP. On the other hand, when p > 1/2 the program will tend to produce
more elements a than are consumed by the destructors, and the above program is ASP. In
the sequel, we will show two methods to formally prove this fact.

It will be convenient to represent the functor as F (X) = A‹ ◊ X as A ◊ X + X. In the
rest of this paper we will often use the latter representation and refer to the final coalgebra

as observation streams OS = (A‹)Ê with structure OS A ◊ OS + OS<out,unf>

≥=
oo given by

out(a, ‡) = a : ‡ and unf(‡) = ‹ : ‡.
Streams are not the only coinductively defined data; infinite binary trees are another

classical example. To generate trees, we can imagine that a program produces an output
value—labeling the root node—and two child programs, which then generate the left and
right child of a tree of outputs. Much like we saw for streams, probabilistic programs
generating these trees may sometimes step to a single new program without producing
outputs. Accordingly we will work with the functor F (X) = A ◊ X ◊ X + X, where the left
summand can be thought of as the result of an output step, while the right summand gives
the result of a non-output step.

I Theorem 4 (Finality for trees). Given a set of programs T endowed with a probabilistic

step function st : T æ D(A ◊ T ◊ T + T), there is a unique semantics function J≠K assigning

to each program a probability distribution of output trees such that the following diagram

commutes in the Kleisli category K¸(D).

T ¶
J≠K //

¶st

✏✏

Trees(A‹)

¶<out,unf>≠1

✏✏
A ◊ T ◊ T + T ¶

id◊J≠K◊J≠K+J≠K // A ◊ Trees(A‹) ◊ Trees(A‹) + Trees(A‹)

Trees(A‹) are infinite trees where the nodes are either elements of A or ‹. An a-node has
two children whereas a ‹-node only has one child. Formally, we can construct these trees
with the two maps out and unf:

unf(
‡

) =

‹

‡
out(a,

‡
,

·) =

a

‡ ·

ICALP 2018

#(�) =

Example

374:12 Almost Sure Productivity

which is a sub-martingale:

EJT0KÕ [Xi+1 | Fi] = EJT0KÕ

S

U
iÿ

j=0

Oj + Oi+1 ≠ “

iÿ

j=0

Uj ≠ “Ui+1 + #(Ti+2) | Fi

T

V

Ø EJT0KÕ

S

U
iÿ

j=0

Oj ≠ “

iÿ

j=0

Uj + #(Ti+1) | Fi

T

V

=
iÿ

j=0

Oj ≠ “

iÿ

j=0

Uj + #(Ti+1) = Xi.

The remainder of the proof is now quite similar to the stream case. #(Ti) Æ c
Õ where c

Õ is
one more than the number of constructors in the original term T0. This follows by observing
that (i) the step function increases the measure by at most the number of constructors or 1
every unfolding step, and (ii) the step function only unfolds if a term reduces to a term with
non-positive measure. Similarly,

iÿ

j=0

Uj Ø Âi/c
Õ
Ê

since each unfolding step leads to at most c
Õ output (non-unfolding) steps.

Since Oi and Ui are both in {0, 1}, this implies that |Xi+1 ≠ Xi| is bounded by some
constant c = c

Õ + 2, depending only on the initial term. We can now apply the Azuma-
Hoe�ding inequality (Theorem 11). For every n œ N and B Ø 0, we have

Pr
JT0KÕ

[Xn ≠ X0 Ø ≠B] Ø 1 ≠ exp(≠B
2
/2nc).

Taking B = n
2/3, we have

Pr
JT0KÕ

[Xn Ø X0 ≠ n
2/3] Ø 1 ≠ exp(≠n

1/3
/2c).

We also know that the total number of outputs along the path w is at least
nÿ

j=0

Oj = Xn + “

nÿ

j=0

Uj ≠ #(Tn+1) Ø Xn + “Ân/c
Õ
Ê.

So if “ > 0, the stream has zero probability of producing at most M outputs along w for
any finite M . This is because for Xn is at least ≠n

2/3 with probability arbitrarily close to 1
(for large enough n), and “Ân/c

Õ
Ê is growing linearly in n for “ positive. Since the tree term

produces at least M outputs along path w with probability 1 for every M and every w, it is
ASP. J

5.3 Examples
We consider a few examples of our analysis. The alphabet A does not a�ect the ASP property;
without loss of generality, we can let the alphabet A be the singleton {ı}.

I Example 12. Consider the stream definition ‡ = (ı : ‡) üp tail(‡). The # measure of
the stream term is p · 1 + (1 ≠ p) · (≠1) = 2p ≠ 1. By Theorem 7, the stream is ASP when
p > 1/2.

A. Aguirre, G. Barthe, J. Hsu, A. Silva 374:5

I Example 3. Let us consider the following program defining a stream ‡ recursively, in
which each recursion step is determined by a coin flip with bias p:

‡ = (a : ‡) üp tail(‡)

In the next section we will formally introduce this programming language, but intuitively
the program repeatedly flips a coin. If the coin flip results in heads the program produces an
element a. Otherwise the program tries to compute the tail of the recursive call; the first
element produced by the recursive call is dropped (consumed), while subsequent elements
produced (if any) are emitted as output.

To analyze the productivity behavior of this probabilistic program, we can reason intu-
itively. Each time the second branch is chosen, the program must choose the first branch
strictly more than once in order to produce one output (since, e.g., tail(a : ‡) = ‡). Accord-
ingly, the productivity behavior of this program depends on the value of p. When p is less
than 1/2, the program chooses the first branch less often than the second branch and the
program is not ASP. On the other hand, when p > 1/2 the program will tend to produce
more elements a than are consumed by the destructors, and the above program is ASP. In
the sequel, we will show two methods to formally prove this fact.

It will be convenient to represent the functor as F (X) = A‹ ◊ X as A ◊ X + X. In the
rest of this paper we will often use the latter representation and refer to the final coalgebra

as observation streams OS = (A‹)Ê with structure OS A ◊ OS + OS<out,unf>

≥=
oo given by

out(a, ‡) = a : ‡ and unf(‡) = ‹ : ‡.
Streams are not the only coinductively defined data; infinite binary trees are another

classical example. To generate trees, we can imagine that a program produces an output
value—labeling the root node—and two child programs, which then generate the left and
right child of a tree of outputs. Much like we saw for streams, probabilistic programs
generating these trees may sometimes step to a single new program without producing
outputs. Accordingly we will work with the functor F (X) = A ◊ X ◊ X + X, where the left
summand can be thought of as the result of an output step, while the right summand gives
the result of a non-output step.

I Theorem 4 (Finality for trees). Given a set of programs T endowed with a probabilistic

step function st : T æ D(A ◊ T ◊ T + T), there is a unique semantics function J≠K assigning

to each program a probability distribution of output trees such that the following diagram

commutes in the Kleisli category K¸(D).

T ¶
J≠K //

¶st

✏✏

Trees(A‹)

¶<out,unf>≠1

✏✏
A ◊ T ◊ T + T ¶

id◊J≠K◊J≠K+J≠K // A ◊ Trees(A‹) ◊ Trees(A‹) + Trees(A‹)

Trees(A‹) are infinite trees where the nodes are either elements of A or ‹. An a-node has
two children whereas a ‹-node only has one child. Formally, we can construct these trees
with the two maps out and unf:

unf(
‡

) =

‹

‡
out(a,

‡
,

·) =

a

‡ ·

ICALP 2018

#(�) =

#(�) > 0 () p > 1/2

ASP II : Probabilistic model
checking

Idea: Associate with a program a pPDA and reduce ASP to
model checking

ASP II : Probabilistic model
checking

374:14 Almost Sure Productivity

Given a pPDA A, a starting configuration (s, “) œ C and a LTL formula „, the qualitative

model-checking problem is to decide whether runs starting from (s, “) satisfy „ almost surely,
i.e., whether PrfiœPaths(s,“)[fi |= „] = 1. The following is known.

I Theorem 15 (Brázdil, et al. [7]). The quantitative model-checking problem for pPDAs

against LTL specifications is decidable.

Almost sure productivity states that an event—namely, producing an output—occurs
infinitely often with probability 1. Such properties can be expressed in LTL.

I Lemma 16. Let (s, “) œ C be an initial configuration and B ™ C be a set of configurations.

Then PrfiœPaths(s,“)[fi visits B infinitely often] = 1 i� PrfiœPaths(s,“)[fi |= ⇤⌃B] = 1.

Proof. Trivially by computing the semantics. J

We will encode language terms as pPDAs and cast almost sure productivity as an LTL
property stating that configurations representing output steps are reached infinitely often
with probability 1. Theorem 15 then gives a decision procedure for ASP. In general, this
algorithm1 is in PSPACE.

6.2 Modeling streams with pPDAs
The idea behind our encoding from terms to pPDAs is simple to describe. The states of the
pPDA will represent subterms of the original term, and transitions will model steps. In the
original step relation, the only way a subterm can step to a non-subterm is by accumulating
destructors. We use a single-letter stack alphabet to track the number of destructors so that
a term like tailk(e) can be modeled by the state corresponding to e and k counters on the
stack. More formally, given a stream term e we define a pPDA Ae = (Se, {tl}, Te), where Se

is the set of syntactic subterms of e and Te is the following transition function:

Te((‡, a), (e, a)) = 1
Te((e1 üp e2, a), (e1, a)) = p

Te((e1 üp e2, a), (e2, a)) = 1 ≠ p

Te((aÕ : e
Õ
, ‹), (eÕ

, Á)) = 1
Te((aÕ : e

Õ
, tl), (eÕ

, Á)) = 1
Te((tail(eÕ), a), (eÕ

, tl · a) = 1

Above, · concatenates strings and we implicitly treat a as alphabet symbol or a singleton
string. All non-specified transitions have zero probability. We define the set of outputting

configurations as O , {s œ C | ÷a
Õ
, e

Õ
. s = (aÕ : e

Õ
, ‹)}, that is, configurations where the

current term is a constructor and there are no pending destructors. Our main result states
that this set is visited infinitely often with probability 1 if and only if e is ASP. In fact, we
prove something stronger:

I Theorem 17. Let e be a stream term and let Ae be the corresponding pPDA. Then,

Pr
t≥JeK

[t has infinitely many output nodes] = Pr
fi≥Paths(e,Á)

[fi |= ⇤⌃ O].

In particular, e is ASP if and only if for almost all runs fi starting in (e, Á), fi |= ⇤ ⌃ O.

1 Technically, this algorithm requires first encoding the LTL formula into a Deterministic Rabin Automaton
(DRA). Even though this encoding can in general blow up the problem size exponentially, this is not
the case for the simple conditions we consider.

374:14 Almost Sure Productivity

Given a pPDA A, a starting configuration (s, “) œ C and a LTL formula „, the qualitative

model-checking problem is to decide whether runs starting from (s, “) satisfy „ almost surely,
i.e., whether PrfiœPaths(s,“)[fi |= „] = 1. The following is known.

I Theorem 15 (Brázdil, et al. [7]). The quantitative model-checking problem for pPDAs

against LTL specifications is decidable.

Almost sure productivity states that an event—namely, producing an output—occurs
infinitely often with probability 1. Such properties can be expressed in LTL.

I Lemma 16. Let (s, “) œ C be an initial configuration and B ™ C be a set of configurations.

Then PrfiœPaths(s,“)[fi visits B infinitely often] = 1 i� PrfiœPaths(s,“)[fi |= ⇤⌃B] = 1.

Proof. Trivially by computing the semantics. J

We will encode language terms as pPDAs and cast almost sure productivity as an LTL
property stating that configurations representing output steps are reached infinitely often
with probability 1. Theorem 15 then gives a decision procedure for ASP. In general, this
algorithm1 is in PSPACE.

6.2 Modeling streams with pPDAs
The idea behind our encoding from terms to pPDAs is simple to describe. The states of the
pPDA will represent subterms of the original term, and transitions will model steps. In the
original step relation, the only way a subterm can step to a non-subterm is by accumulating
destructors. We use a single-letter stack alphabet to track the number of destructors so that
a term like tailk(e) can be modeled by the state corresponding to e and k counters on the
stack. More formally, given a stream term e we define a pPDA Ae = (Se, {tl}, Te), where Se

is the set of syntactic subterms of e and Te is the following transition function:

Te((‡, a), (e, a)) = 1
Te((e1 üp e2, a), (e1, a)) = p

Te((e1 üp e2, a), (e2, a)) = 1 ≠ p

Te((aÕ : e
Õ
, ‹), (eÕ

, Á)) = 1
Te((aÕ : e

Õ
, tl), (eÕ

, Á)) = 1
Te((tail(eÕ), a), (eÕ

, tl · a) = 1

Above, · concatenates strings and we implicitly treat a as alphabet symbol or a singleton
string. All non-specified transitions have zero probability. We define the set of outputting

configurations as O , {s œ C | ÷a
Õ
, e

Õ
. s = (aÕ : e

Õ
, ‹)}, that is, configurations where the

current term is a constructor and there are no pending destructors. Our main result states
that this set is visited infinitely often with probability 1 if and only if e is ASP. In fact, we
prove something stronger:

I Theorem 17. Let e be a stream term and let Ae be the corresponding pPDA. Then,

Pr
t≥JeK

[t has infinitely many output nodes] = Pr
fi≥Paths(e,Á)

[fi |= ⇤⌃ O].

In particular, e is ASP if and only if for almost all runs fi starting in (e, Á), fi |= ⇤ ⌃ O.

1 Technically, this algorithm requires first encoding the LTL formula into a Deterministic Rabin Automaton
(DRA). Even though this encoding can in general blow up the problem size exponentially, this is not
the case for the simple conditions we consider.

Idea: Associate with a program a pPDA and reduce ASP to
model checking

ASP II : Probabilistic model
checking

374:14 Almost Sure Productivity

Given a pPDA A, a starting configuration (s, “) œ C and a LTL formula „, the qualitative

model-checking problem is to decide whether runs starting from (s, “) satisfy „ almost surely,
i.e., whether PrfiœPaths(s,“)[fi |= „] = 1. The following is known.

I Theorem 15 (Brázdil, et al. [7]). The quantitative model-checking problem for pPDAs

against LTL specifications is decidable.

Almost sure productivity states that an event—namely, producing an output—occurs
infinitely often with probability 1. Such properties can be expressed in LTL.

I Lemma 16. Let (s, “) œ C be an initial configuration and B ™ C be a set of configurations.

Then PrfiœPaths(s,“)[fi visits B infinitely often] = 1 i� PrfiœPaths(s,“)[fi |= ⇤⌃B] = 1.

Proof. Trivially by computing the semantics. J

We will encode language terms as pPDAs and cast almost sure productivity as an LTL
property stating that configurations representing output steps are reached infinitely often
with probability 1. Theorem 15 then gives a decision procedure for ASP. In general, this
algorithm1 is in PSPACE.

6.2 Modeling streams with pPDAs
The idea behind our encoding from terms to pPDAs is simple to describe. The states of the
pPDA will represent subterms of the original term, and transitions will model steps. In the
original step relation, the only way a subterm can step to a non-subterm is by accumulating
destructors. We use a single-letter stack alphabet to track the number of destructors so that
a term like tailk(e) can be modeled by the state corresponding to e and k counters on the
stack. More formally, given a stream term e we define a pPDA Ae = (Se, {tl}, Te), where Se

is the set of syntactic subterms of e and Te is the following transition function:

Te((‡, a), (e, a)) = 1
Te((e1 üp e2, a), (e1, a)) = p

Te((e1 üp e2, a), (e2, a)) = 1 ≠ p

Te((aÕ : e
Õ
, ‹), (eÕ

, Á)) = 1
Te((aÕ : e

Õ
, tl), (eÕ

, Á)) = 1
Te((tail(eÕ), a), (eÕ

, tl · a) = 1

Above, · concatenates strings and we implicitly treat a as alphabet symbol or a singleton
string. All non-specified transitions have zero probability. We define the set of outputting

configurations as O , {s œ C | ÷a
Õ
, e

Õ
. s = (aÕ : e

Õ
, ‹)}, that is, configurations where the

current term is a constructor and there are no pending destructors. Our main result states
that this set is visited infinitely often with probability 1 if and only if e is ASP. In fact, we
prove something stronger:

I Theorem 17. Let e be a stream term and let Ae be the corresponding pPDA. Then,

Pr
t≥JeK

[t has infinitely many output nodes] = Pr
fi≥Paths(e,Á)

[fi |= ⇤⌃ O].

In particular, e is ASP if and only if for almost all runs fi starting in (e, Á), fi |= ⇤ ⌃ O.

1 Technically, this algorithm requires first encoding the LTL formula into a Deterministic Rabin Automaton
(DRA). Even though this encoding can in general blow up the problem size exponentially, this is not
the case for the simple conditions we consider.

374:14 Almost Sure Productivity

Given a pPDA A, a starting configuration (s, “) œ C and a LTL formula „, the qualitative

model-checking problem is to decide whether runs starting from (s, “) satisfy „ almost surely,
i.e., whether PrfiœPaths(s,“)[fi |= „] = 1. The following is known.

I Theorem 15 (Brázdil, et al. [7]). The quantitative model-checking problem for pPDAs

against LTL specifications is decidable.

Almost sure productivity states that an event—namely, producing an output—occurs
infinitely often with probability 1. Such properties can be expressed in LTL.

I Lemma 16. Let (s, “) œ C be an initial configuration and B ™ C be a set of configurations.

Then PrfiœPaths(s,“)[fi visits B infinitely often] = 1 i� PrfiœPaths(s,“)[fi |= ⇤⌃B] = 1.

Proof. Trivially by computing the semantics. J

We will encode language terms as pPDAs and cast almost sure productivity as an LTL
property stating that configurations representing output steps are reached infinitely often
with probability 1. Theorem 15 then gives a decision procedure for ASP. In general, this
algorithm1 is in PSPACE.

6.2 Modeling streams with pPDAs
The idea behind our encoding from terms to pPDAs is simple to describe. The states of the
pPDA will represent subterms of the original term, and transitions will model steps. In the
original step relation, the only way a subterm can step to a non-subterm is by accumulating
destructors. We use a single-letter stack alphabet to track the number of destructors so that
a term like tailk(e) can be modeled by the state corresponding to e and k counters on the
stack. More formally, given a stream term e we define a pPDA Ae = (Se, {tl}, Te), where Se

is the set of syntactic subterms of e and Te is the following transition function:

Te((‡, a), (e, a)) = 1
Te((e1 üp e2, a), (e1, a)) = p

Te((e1 üp e2, a), (e2, a)) = 1 ≠ p

Te((aÕ : e
Õ
, ‹), (eÕ

, Á)) = 1
Te((aÕ : e

Õ
, tl), (eÕ

, Á)) = 1
Te((tail(eÕ), a), (eÕ

, tl · a) = 1

Above, · concatenates strings and we implicitly treat a as alphabet symbol or a singleton
string. All non-specified transitions have zero probability. We define the set of outputting

configurations as O , {s œ C | ÷a
Õ
, e

Õ
. s = (aÕ : e

Õ
, ‹)}, that is, configurations where the

current term is a constructor and there are no pending destructors. Our main result states
that this set is visited infinitely often with probability 1 if and only if e is ASP. In fact, we
prove something stronger:

I Theorem 17. Let e be a stream term and let Ae be the corresponding pPDA. Then,

Pr
t≥JeK

[t has infinitely many output nodes] = Pr
fi≥Paths(e,Á)

[fi |= ⇤⌃ O].

In particular, e is ASP if and only if for almost all runs fi starting in (e, Á), fi |= ⇤ ⌃ O.

1 Technically, this algorithm requires first encoding the LTL formula into a Deterministic Rabin Automaton
(DRA). Even though this encoding can in general blow up the problem size exponentially, this is not
the case for the simple conditions we consider.

Theorem

ASP II : Probabilistic model
checking

374:14 Almost Sure Productivity

Given a pPDA A, a starting configuration (s, “) œ C and a LTL formula „, the qualitative

model-checking problem is to decide whether runs starting from (s, “) satisfy „ almost surely,
i.e., whether PrfiœPaths(s,“)[fi |= „] = 1. The following is known.

I Theorem 15 (Brázdil, et al. [7]). The quantitative model-checking problem for pPDAs

against LTL specifications is decidable.

Almost sure productivity states that an event—namely, producing an output—occurs
infinitely often with probability 1. Such properties can be expressed in LTL.

I Lemma 16. Let (s, “) œ C be an initial configuration and B ™ C be a set of configurations.

Then PrfiœPaths(s,“)[fi visits B infinitely often] = 1 i� PrfiœPaths(s,“)[fi |= ⇤⌃B] = 1.

Proof. Trivially by computing the semantics. J

We will encode language terms as pPDAs and cast almost sure productivity as an LTL
property stating that configurations representing output steps are reached infinitely often
with probability 1. Theorem 15 then gives a decision procedure for ASP. In general, this
algorithm1 is in PSPACE.

6.2 Modeling streams with pPDAs
The idea behind our encoding from terms to pPDAs is simple to describe. The states of the
pPDA will represent subterms of the original term, and transitions will model steps. In the
original step relation, the only way a subterm can step to a non-subterm is by accumulating
destructors. We use a single-letter stack alphabet to track the number of destructors so that
a term like tailk(e) can be modeled by the state corresponding to e and k counters on the
stack. More formally, given a stream term e we define a pPDA Ae = (Se, {tl}, Te), where Se

is the set of syntactic subterms of e and Te is the following transition function:

Te((‡, a), (e, a)) = 1
Te((e1 üp e2, a), (e1, a)) = p

Te((e1 üp e2, a), (e2, a)) = 1 ≠ p

Te((aÕ : e
Õ
, ‹), (eÕ

, Á)) = 1
Te((aÕ : e

Õ
, tl), (eÕ

, Á)) = 1
Te((tail(eÕ), a), (eÕ

, tl · a) = 1

Above, · concatenates strings and we implicitly treat a as alphabet symbol or a singleton
string. All non-specified transitions have zero probability. We define the set of outputting

configurations as O , {s œ C | ÷a
Õ
, e

Õ
. s = (aÕ : e

Õ
, ‹)}, that is, configurations where the

current term is a constructor and there are no pending destructors. Our main result states
that this set is visited infinitely often with probability 1 if and only if e is ASP. In fact, we
prove something stronger:

I Theorem 17. Let e be a stream term and let Ae be the corresponding pPDA. Then,

Pr
t≥JeK

[t has infinitely many output nodes] = Pr
fi≥Paths(e,Á)

[fi |= ⇤⌃ O].

In particular, e is ASP if and only if for almost all runs fi starting in (e, Á), fi |= ⇤ ⌃ O.

1 Technically, this algorithm requires first encoding the LTL formula into a Deterministic Rabin Automaton
(DRA). Even though this encoding can in general blow up the problem size exponentially, this is not
the case for the simple conditions we consider.

374:14 Almost Sure Productivity

Given a pPDA A, a starting configuration (s, “) œ C and a LTL formula „, the qualitative

model-checking problem is to decide whether runs starting from (s, “) satisfy „ almost surely,
i.e., whether PrfiœPaths(s,“)[fi |= „] = 1. The following is known.

I Theorem 15 (Brázdil, et al. [7]). The quantitative model-checking problem for pPDAs

against LTL specifications is decidable.

Almost sure productivity states that an event—namely, producing an output—occurs
infinitely often with probability 1. Such properties can be expressed in LTL.

I Lemma 16. Let (s, “) œ C be an initial configuration and B ™ C be a set of configurations.

Then PrfiœPaths(s,“)[fi visits B infinitely often] = 1 i� PrfiœPaths(s,“)[fi |= ⇤⌃B] = 1.

Proof. Trivially by computing the semantics. J

We will encode language terms as pPDAs and cast almost sure productivity as an LTL
property stating that configurations representing output steps are reached infinitely often
with probability 1. Theorem 15 then gives a decision procedure for ASP. In general, this
algorithm1 is in PSPACE.

6.2 Modeling streams with pPDAs
The idea behind our encoding from terms to pPDAs is simple to describe. The states of the
pPDA will represent subterms of the original term, and transitions will model steps. In the
original step relation, the only way a subterm can step to a non-subterm is by accumulating
destructors. We use a single-letter stack alphabet to track the number of destructors so that
a term like tailk(e) can be modeled by the state corresponding to e and k counters on the
stack. More formally, given a stream term e we define a pPDA Ae = (Se, {tl}, Te), where Se

is the set of syntactic subterms of e and Te is the following transition function:

Te((‡, a), (e, a)) = 1
Te((e1 üp e2, a), (e1, a)) = p

Te((e1 üp e2, a), (e2, a)) = 1 ≠ p

Te((aÕ : e
Õ
, ‹), (eÕ

, Á)) = 1
Te((aÕ : e

Õ
, tl), (eÕ

, Á)) = 1
Te((tail(eÕ), a), (eÕ

, tl · a) = 1

Above, · concatenates strings and we implicitly treat a as alphabet symbol or a singleton
string. All non-specified transitions have zero probability. We define the set of outputting

configurations as O , {s œ C | ÷a
Õ
, e

Õ
. s = (aÕ : e

Õ
, ‹)}, that is, configurations where the

current term is a constructor and there are no pending destructors. Our main result states
that this set is visited infinitely often with probability 1 if and only if e is ASP. In fact, we
prove something stronger:

I Theorem 17. Let e be a stream term and let Ae be the corresponding pPDA. Then,

Pr
t≥JeK

[t has infinitely many output nodes] = Pr
fi≥Paths(e,Á)

[fi |= ⇤⌃ O].

In particular, e is ASP if and only if for almost all runs fi starting in (e, Á), fi |= ⇤ ⌃ O.

1 Technically, this algorithm requires first encoding the LTL formula into a Deterministic Rabin Automaton
(DRA). Even though this encoding can in general blow up the problem size exponentially, this is not
the case for the simple conditions we consider.

Theorem

Model checking LTL formulas against pPDAs is decidable
(Brazdil et al) => ASP is decidable for stream programs

Conclusions
• Simple definition — non trivial formalisation

• Methods for stream can be extended to trees

• Richer languages, higher-order, other conductive
types

• Different notions of ASP - weaker

• (Non-)Dependency on the step relation

