Continuations, threads, and LLVM

Kavon Farvardin
John Reppy

University of Chicago

June 2018

Introduction

Motivation

» Compilers for concurrent and parallel languages can benefit from having
an Intermediate Representation (IR) that supports operations on
lightweight user-space threads.

» Such an IR can then represent the runtime-system mechanisms for
concurrency/parallelism.

» Inlining of runtime-system code into the application code then enables
cross-layer optimizations.

» Our Parallel ML (PML) compiler, which is part of the Manticore
project, follows this approach.

> We are exploring the tradeoffs between several different runtime
representations of threads in our compiler using LLVM. (Work in
progress.)

June 2018 WG2.8 - Asilomar 2

Introduction

Representing threads in an IR

» How should thread state and operations on threads be represented in an
IR for a concurrent or parallel language?

» One principled approach is to represent a suspended thread as a
continuation.

P There is a long history of using surface-language continuations
(callcc) to implement multithreading.

There are a number of different approaches to incorporating continuations in
a compiler’s IR.
P> Appel-style CPS representation — all continuations are explicit

> Kelsey-style CPS representation — explicit continuations with
annotations

» ANF with continuation binders — select continuations are reified

June 2018 WG2.8 - Asilomar

Introduction

Continuations in an IR

» ANF+Continuations works well for writing runtime code and can be
easily converted to the other representations or directly compiled to
target code.

» Our PML compiler uses an ANF-style IR extended with continuation
operations called BOM.

PML compiler

96 o
—>{BOM RS ops |& crG | MLRISCI Ix86—64

June 2018 WG2.8 — Asilomar

Introduction

Representing threads in the BOM IR (continued ...)

(exp) == let (z1,...,2,) = (prim) in {(exp)
| fun f (z1,...,2,) = (exp) in (exp)
| eont k (z1,...,2,) = (exp) in (exp)
| if 2 then (exp) else (exp)
| apply f (z1,.... %)
| throwk (z1,...,2,)

(prim) ::= create_thread (f)
| other primitive operations and values

June 2018 WG2.8 — Asilomar

Introduction

Representing threads in the BOM IR (continued ...)

(exp) == let (z1,...,2,) = (prim) in {(exp)
| fun f (z1,...,2,) = (exp) in (exp)
| eont k (z1,...,2,) = (exp) in (exp)
| if 2 then (exp) else (exp)
| apply f (z1,.... %)
| throwk (z1,...,2,)

(prim) ::= create_thread (f)
| other primitive operations and values

Three forms for continuations:

June 2018 WG2.8 — Asilomar

Introduction

Representing threads in the BOM IR (continued ...)

(exp) == let (z1,...,2,) = (prim) in {(exp)
| fun f (z1,...,2,) = (exp) in (exp)
| econt k (z1,...,2,) = (exp) in (exp)
| if 2 then (exp) else (exp)
| apply f (z1,.... %)
| throwk (z1,...,2,)

(prim) ::= create_thread (f)
| other primitive operations and values

Three forms for continuations:

P> cont bindings

June 2018 WG2.8 — Asilomar

Introduction

Representing threads in the BOM IR (continued ...)

(exp) == let (z1,...,2,) = (prim) in {(exp)

| fun f (z1,...,2,) = (exp) in (exp)

| eont k (z1,...,2,) = (exp) in (exp)
| if 2 then (exp) else (exp)
|
|

apply f (1, n)
throwk (21, ..., Zn)

(prim) ::= create_thread (f)
| other primitive operations and values

Three forms for continuations:
P> cont bindings
> throw expressions

June 2018 WG2.8 — Asilomar

Introduction

Representing threads in the BOM IR (continued ...)

(exp) == let (z1,...,2,) = (prim) in {(exp)

| fun f (z1,...,2,) = (exp) in (exp)

| eont k (z1,...,2,) = (exp) in (exp)
| if 2 then (exp) else (exp)
|
|

apply f (€1, n)
throw k (z1,...,xy)

(prim) ::= create_thread (f)
| other primitive operations and values

Three forms for continuations:
P> cont bindings
> throw expressions

» create_thread operator

June 2018 WG2.8 — Asilomar

Introduction

Example: thread creation

Thread creation

fun fork f =
fun £/ () = (
apply £ ()7
throw Sched.dequeue ())
let childK = thread_create f’
in
apply Sched.enqueue childK

June 2018 WG2.8 — Asilomar

Introduction

Example: thread creation

Thread creation
fun fork f =
fun £/ () = (
apply £ ();
throw Sched.dequeue ())
let childK = thread_create f’
in
apply Sched.enqueue childK

We can also run the child thread first
fun fork f = cont parentK = ()
in
fun £/ () = (
apply £ ();
throw Sched.dequeue ())
let childK = thread_create £’
in
apply Sched.enqueue parentkK;
throw childK ()

June 2018 WG2.8 — Asilomar

Introduction

Example: context switch

Coroutine style explicit context switch.
fun yield () = cont k() = ()
in
Sched.enqueue k;
throw Sched.dequeue ()

June 2018 WG2.8 — Asilomar

Introduction

Example: context switch

Coroutine style explicit context switch.

fun yield () = cont k() = ()
in
Sched.enqueue k;
throw Sched.dequeue ()

We can build all kinds of concurrency and parallelism mechanisms with this
IR:

locks and condition variables
CML events / message-passing mechanisms

>
>
» work-stealing fork-join
>

futures

June 2018 WG2.8 — Asilomar

Compiler support

Implementing continuations

Given an IR with continuations; we have to decide on a semantics for
continuations and a supporting runtime model.

> first-class continuations
P one-shot continuations (may only be thrown to once)

P escape-continuations (essentially set jmp/longjmp)

First-class continuations are the most expressive and do not require any
restrictions on their use in the IR
For example, we do not need to define create_thread as a primitive.

fun create_thread f =
cont thdK () = (
apply £ ()7
throw Sched.dequeue ())
in
thdK

June 2018 WG2.8 - Asilomar

Compiler support

Implementing continuations (continued ...)

» Implementing first-class continuations on a traditional stack, however, is
quite challenging.

» Early Scheme compilers used environment analysis to map
continuations to stack-allocated frames (e.g., Rabbit and Orbit).
Note that Kelsey’s IR encodes this analysis.

» Stack copying would be used to implement captured continuations.

P> Segmented stacks were introduced (Chez Scheme) as a way to
implement callcc more efficiently.

» Heap-allocated continuations (SML/NJ) provided a very simple
implementation that abandoned the stack.

June 2018 WG2.8 - Asilomar 9

Runtime representations

Choosing an approach

» Heap-allocated continuations provide a simple implementation of CPS,
but giving up the stack has potentially significant performance costs.

PML compiler 466
& o
o e
g R
& [Tcps 1o [cra
—>{ BOM IR R R MLRISC x86-64

June 2018 'WG2.8 — Asilomar

Runtime representations

Choosing an approach

» Heap-allocated continuations provide a simple implementation of CPS,
but giving up the stack has potentially significant performance costs.

P Previous empirical comparisons of runtime models are controversial
[Appel-Shao °96] or dated [Clinger et al. *88 & *99].

PML compiler @6
& o
o e
g R
& [Tcps 1o [cra
—>{ BOM IR R R MLRISC x86-64

June 2018 'WG2.8 — Asilomar 10

Runtime representations

Choosing an approach

» Heap-allocated continuations provide a simple implementation of CPS,
but giving up the stack has potentially significant performance costs.

P Previous empirical comparisons of runtime models are controversial
[Appel-Shao °96] or dated [Clinger et al. *88 & *99].

> We are comparing four different runtime representations for
continuations techniques using the LLLVM code generator framework.

PML compiler &
& &
o e
g R
& [Tcps 1o [cra
—>{ BOM IR R R > »| x86-64

June 2018 'WG2.8 — Asilomar 10

Runtime representations

Contiguous stacks

June 2018 'WG2.8 — Asilomar

Runtime representations

Contiguous stacks

June 2018 WG2.8 — Asilomar

Runtime representations

Contiguous stacks

June 2018 WG2.8 — Asilomar

Runtime representations

Contiguous stacks

June 2018 WG2.8 — Asilomar

Runtime representations

Contiguous stacks

=

I\
| 20 | ho
14 14

I\

I\
H return
4

June 2018 WG2.8 — Asilomar

H return
//

Runtime representations

Contiguous stacks

Pros and cons:
+ natural LLVM model
+ good locality across call/return
+ hardware optimized for return branch prediction
- stack overflow is a problem
- GC interface is more complicated and expensive
- potential race conditions when switching stacks

- thread creation and space overhead is high

June 2018 'WG2.8 — Asilomar 12

Runtime representations

Segmented stacks

June 2018 'WG2.8 — Asilomar

Runtime representations

Segmented stacks

June 2018 WG2.8 — Asilomar

Runtime representations

Segmented stacks

June 2018 WG2.8 — Asilomar

Runtime representations

Segmented stacks

June 2018 WG2.8 — Asilomar

Runtime representations

Segmented stacks

[y E

L
)

0\ 0\ 0\ 0\
H {0) H h() H return H return
4 4 4

June 2018 WG2.8 — Asilomar

Runtime representations

Segmented stacks

Pros and cons:
+ close to natural LLVM model
+ good locality across call/return
+ hardware optimized for return branch prediction
+ better space overhead than contiguous stacks
- GC interface is more complicated and expensive
- potential race conditions when switching stacks
- thread creation overhead is high

- additional calling overhead/complexity

June 2018 'WG2.8 — Asilomar 14

Runtime representations

Heap-allocated stack stacks

June 2018 'WG2.8 — Asilomar

Runtime representations

Heap-allocated stack stacks

June 2018 WG2.8 — Asilomar

Runtime representations

Heap-allocated stack stacks

June 2018 WG2.8 — Asilomar

Runtime representations

Heap-allocated stack stacks

June 2018 WG2.8 — Asilomar 15

Runtime representations

Heap-allocated stack stacks

=

0\ 0\
H {0) H h() H return H return
4 4 4

June 2018 WG2.8 — Asilomar 15

Runtime representations

Heap-allocated stack frames

Pros and cons:
+ good locality across call/return
+ hardware optimized for return branch prediction
+ better space overhead than contiguous stacks
+ low thread creation overhead

- GC interface is more complicated and expensive

potential race conditions when switching stacks

additional calling overhead/complexity

June 2018 'WG2.8 — Asilomar 16

Runtime representations

Heap-allocated continuation closures

June 2018 'WG2.8 — Asilomar

Runtime representations

Heap-allocated continuation closures

June 2018 'WG2.8 — Asilomar

Runtime representations

Heap-allocated continuation closures

I\
| h(k)
14

June 2018 'WG2.8 — Asilomar

Runtime representations

Heap-allocated continuation closures

kK’ kK’
v v
k k

)\
&
14

'WG2.8 — Asilomar

June 2018

Runtime representations

Heap-allocated continuation closures

June 2018

I\
| h(k)
14

'WG2.8 — Asilomar

¥ K
v v
k k
. v
I\ I\
L K0 k0
14 14

Runtime representations

Heap-allocated continuation closures

Pros and cons:
+ simple implementation
+ simple GC interface
minimal space overhead

fast thread creation

+ + o+

no race conditions when context switching
- loses locality between calls and returns
- increased allocation rate

- cannot take advantage of return-branch prediction

June 2018 'WG2.8 — Asilomar 18

Preliminary evaluation
Sequential costs

W stack I seg. stack heap frames M heap conts

6.00

5.00

Normalized time
@ >
o o
S S

g
o
o

0.00
ack cpstak divrec evenodd life minimax nqueens scc tak

Benchmark

June 2018 WG2.8 — Asilomar

Preliminary evaluation

Concurrency costs

> We do not have complete numbers for threading experiments yet
(because of some GC issues in the heap-allocated frame
implementation).

» Previous experiments showed that heap-allocated continuations were
significantly faster than stacks for thread creation.

» Segmented stacks performed poorly, but we have since improved the
implementation and so we need to re-run the experiments.

June 2018 'WG2.8 — Asilomar 20

Conclusion and Future Work

Conclusion and Future Work

We need to complete our experiments before drawing firm conclusions, but
here are some pre

» the overhead of linked frames appears to outweigh the locality benefits
of reusing the frame

> segmented stacks may be the best choice if sequential performance is a
high priority (although they were abandoned by Rust and Go because of
poor implementation).

P the cost of heap-allocated continuations is low enough that the ease of
implementation makes them a good choice.

» need more experiments to complete the study.

June 2018 'WG2.8 — Asilomar pal

	Introduction
	Compiler support
	Runtime representations
	Preliminary evaluation
	Conclusion and Future Work

